Skip to main content
Log in

Truss topology optimization for mass and reliability considerations—co-evolutionary multiobjective formulations

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The paper presents an approach for simultaneous optimization of structural mass and reliability in discrete truss structures. In addition to member sizing, the selection of an optimal topology from a pre-specified ground structure is a feature of the proposed methodology. To allow for a global search, optimization is performed using a multiobjective evolutionary algorithm. System reliability is based on a recently developed computational approach that is efficient and could be integrated within the framework of an evolutionary optimization process. The presence of multiple allowable topologies in the optimization process was handled through co-evolution in competing subpopulations. A unique feature of the algorithm is an automatic reunification of these populations using hypervolume measure-based indicator as reunification criterion to attain greater search efficiency. Numerical experiments demonstrate the computational advantages of the proposed method. These advantages become more pronounced for large-scale optimization problems, where the standard evolutionary approach fails to produce the desired results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. Source code available at: http://sbe.napier.ac.uk/∼manuel/hypervolume.

References

  • Alba E, Tomassini M (2002) Parallelism and evolutionary algorithms. IEEE T Evolut Comput 6(5):443–462

    Article  Google Scholar 

  • Balling R, Briggs R, Gillman K (2006) Multiple optimum size/shape/topology designs for skeletal structures using a genetic algorithm. J Struct Eng-ASCE 132(7):1158–1165

    Article  Google Scholar 

  • Chen JJ, Cao YB, Sun HI (1999) Topology optimization of truss structures with systematic reliability constraints under multiple loading cases. Acta Mech Solida Sin 12(2):165–173

    Google Scholar 

  • Chen S, Chen W, Lee S (2010) Level set based robust shape and topology optimization under random field uncertainties. Struct Multidiscipl Optim 41:507–524

    Article  MathSciNet  Google Scholar 

  • Cheng FY, Li D (1997) Multiobjective optimization design with Pareto genetic algorithm. J Struct Eng ASCE 123(9):1252–1261

    Article  Google Scholar 

  • Choi SK, Grandhi R, Canfield R (2007) Reliability-based structural design. Springer, New York

    MATH  Google Scholar 

  • Coello Coello CA (2006) Evolutionary multi-objective optimization: a historical view of the field. IEEE Comput Intell M 1:28–36

    Article  Google Scholar 

  • Coello Coello CA, Lamont G, Van Veldhuizen D (2007) Evolutionary algorithms for solving multi-objective problems. In: Goldberg D, Koza J (eds) Genetic and evolutionary computation series, 2nd edn. Springer, New York

    Google Scholar 

  • Cornell CA (1969) A probability-based structural code. J Struct Div-ASCE 66(12):974–985

    Google Scholar 

  • Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic algorithm for multiobjective optimization: NSGA-II. Lect Notes Comput Sci 1917:849–858

    Article  Google Scholar 

  • Deb K, Pratap A, Agrawal A, Meyarivan T (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE T Evolut Comput 6(2):182–197

    Article  Google Scholar 

  • Durillo JJ, Nebro AJ, Coello Coello CA, García-Nieto J, Luna F, Alba E (2010) A study of multiobjective metaheuristics when solving parameter scalable problems. IEEE T Evolut Comput 14(4):618–635

    Article  Google Scholar 

  • Fonseca C, Paquete L, López-Ibáñez M (2006) An improved dimension-sweep algorithm for the hypervolume indicator. IEEE Congress on Evolutionary Computation, pp 1157–1163

  • Galante M (1996) Genetic Algorithms as an approach to optimise real-world trusses. Int J Numer Methods Eng 39:361–382

    Article  MathSciNet  MATH  Google Scholar 

  • Goldberg DE, Samtani MP (1986) Engineering optimization via genetic algorithm. In: Proceedings ninth conference on electronic computation ASCE, New York, pp 471–482

  • Greiner D, Emperador JM, Winter G (2000) Multiobjective optimization of bar structures by Pareto-GA. In: Computational Methods in Applied Sciences and Engineering (ECCOMAS-2000). CIMNE, Barcelona

    Google Scholar 

  • Greiner D, Emperador JM, Winter G (2001) Optimising frame structures by different strategies of genetic algorithms. Finite Elem Anal Des 37(5):381–402

    Article  MATH  Google Scholar 

  • Greiner D, Emperador JM, Winter G (2004) Single and multiobjective frame optimization by evolutionary algorithms and the auto-adaptive rebirth operator. Comput Method Appl Mech Eng 193:3711–3743

    Article  MATH  Google Scholar 

  • Grierson DE, Pak W (1993a) Discrete optimal design using a genetic algorithm. In: Bendsoe MP, Mota Soares CA (eds) Topology design of structures. Kluwer Academic, Dordrecht, pp 89–102

    Google Scholar 

  • Grierson DE, Pak W (1993b) Optimal sizing, geometrical and for truss structures using genetic algorithms. Struct Optim 6:151–159

    Article  Google Scholar 

  • Hajela P (1990) Genetic search—an approach to the nonconvex optimization problem. AIAA J 26(7):1205–1210

    Article  Google Scholar 

  • Hajela P, Lee E (1995) Genetic algorithms in truss topological optimization. Int J Solids Struct 32(22):3341–3357

    Article  MathSciNet  MATH  Google Scholar 

  • Hajela P, Lin CY (1992) Genetic search strategies in multicriterion optimal design. Struct Optim 4:99–107

    Article  Google Scholar 

  • Hajela P, Vittal S (2000) Evolutionary computing and topology optimization: a state of the art assessment. In: Proceedings of the NATO Advanced Research Workshop on Topology Optimization. Budapest, Hungary

    Google Scholar 

  • Hajela P, Lee E, Lin C-Y (1993) Genetic algorithms in structural topology optimization. In: Bendsoe MP, Mota Soares CA (eds) Topology design of structures. Kluwer Academic, Dordrecht, pp 117–133

    Google Scholar 

  • Haldar A, Mahadevan S (2000) Reliability assesment using stochastic finite element analysis. John Wiley & Sons, New York

    Google Scholar 

  • Hasofer AM, Lind NC (1974) Exact and invariant second moment code format. J Eng Mech Div-ASCE 100(EM1):111–121

    Google Scholar 

  • Herrero JM, García-Nieto S, Blasco X, Romero-García V, Sánchez-Pérez JV, Garcia-Raffi LM (2009) Optimization of sonic crystal attenuation properties by ev-MOGA multiobjective evolutionary algorithm. Struct Multidisc Optim 39:203–215

    Article  Google Scholar 

  • Kharmanda G, Olhoff N (2002) Reliability-based topology optimization as a new strategy to generate different structural topologies. Boston. In: 15th Nordic seminar on computational mechanics. Aalborg, Denmark, pp 273–294

  • Kharmanda G, Olhoff N, Mohamed A, Lemaire N (2004) Reliability-based topology optimization. Struct Multidisc Optim 26:295–307

    Article  Google Scholar 

  • Knowles JD, Thiele L, Zitzler E (2006) A tutorial on the performance assessment of stochastic multiobjective optimizers. TIK-Report 214, Computer Engineering and Networks Laboratory, ETH Zurich

  • Lagaros ND, Garavelas AT, Papadrakakis M (2008) Innovative seismic design optimization with reliability constraints. Comput Method Appl Mech Eng 198(1):28–41

    Article  MATH  Google Scholar 

  • Lee DS, Gonzalez LF, Srinivas K, Periaux J (2008) Robust evolutionary algorithms for UAV/UCAV aerodynamic and RCS design optimisation. Comput Fluids 37:547–564

    Article  Google Scholar 

  • Mathakari S, Gardoni P (2007) Reliability-based optimal design of electrical transmission towers using multi-objective genetic algorithms. Comput-Aided Civ Inf 22:282–292

    Article  Google Scholar 

  • Maute K, Frangopol DM (2003) Reliability-based design of MEMS mechanisms by topology optimization. Comput Struct 81:813–824

    Article  Google Scholar 

  • Mogami K, Nishiwaki S, Izui K, Yoshimura M, Kogiso N (2006) Reliability-based structural optimization of frame structures for multiple failure criteria using topology optimization techniques. Struct Multidisc Optim 32(4):299–311

    Article  Google Scholar 

  • Mozumder CK, Patel NM, Tillotson D, Renaud JE, Tovar A (2006) An investigation of reliability-based topology optimization. 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA 2006-7058, Portsmouth, Virginia, September 6–8

  • Murotsu Y, Okada H, Taguchi K, Grimmelt M, Yonezaw M (1984) Automatic generation of stochastically dominant failure modes of frame structures. Struct Saf 2:17–25

    Article  Google Scholar 

  • Okasah N, Frangopol D (2009) Lifetime-oriented multi-objective optimization of structural maintenance considering system reliability, redundancy and life-cycle cost using GA. Struct Saf 31(6):460–474

    Article  Google Scholar 

  • Park S, Choi S, Sikorsky C, Stubbs N (2004) Efficient method for calculation of system reliability of a complex structure. Int J Solids Struct 41:5035–5050

    Article  MATH  Google Scholar 

  • Rajeev S, Krishnamoorthy C S (1992) Discrete optimization of structures using genetic algorithms. J Struct Eng-ASCE 118(5):1233–1250

    Article  Google Scholar 

  • Ruy WS (2001) Topology design of truss structures in a multicriteria environment. Comput-Aided Civ Inf 16(4):246–258

    Article  Google Scholar 

  • Shankar N, Hajela P (1991) Heuristics driven strategies for near-optimal structural topology development. In: Topping BHV (ed) Artificial intelligence structural engineering. Civil-Comp, Oxford, pp 219–26

    Chapter  Google Scholar 

  • Silva M, Tortorelli DA, Norato JA, Ha C, Bae aR (2010) Component and system reliability-based topology optimization using a single-loop method. Struct Multidisc Optim 41(1):87–106

    Article  MathSciNet  Google Scholar 

  • Tang W, Tong L, Gu Y (2005) Improved genetic algorithm for design optimization of truss structures with sizing, shape and topology variables. Int J Numer Methods Eng 62:1737–1762

    Article  MATH  Google Scholar 

  • Thampan CKPV, Krishnamoorthy CS (2001) System reliability-based configuration optimization of trusses. J Struct Eng-ASCE 1278:947–956

    Article  Google Scholar 

  • Tsompanakis Y, Lagaros ND, Papadrakakis M (2008) Structural design optimization considering uncertainties. Structures and infrastructures series vol. 1, Taylor & Francis, London

    Google Scholar 

  • Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms—a comparative case study. Lect Notes Comput Sci 1498:292–301

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a mobility grant of the Agencia Canaria de Investigación, Innovación y Sociedad de la Información – ACIISI (boc-a-2010-119-3494), cofunded in 85% by the European Social Fund (ESF). Also computational resources are supported by the project UNLP08-3E-2010 of the Secretaría de Estado de Universidades e Investigación, Ministerio de Ciencia e Innovación (Spain) and FEDER. Dr. Varun Sakalkar is gratefully acknowledged for valuable advice and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Greiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greiner, D., Hajela, P. Truss topology optimization for mass and reliability considerations—co-evolutionary multiobjective formulations. Struct Multidisc Optim 45, 589–613 (2012). https://doi.org/10.1007/s00158-011-0709-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-011-0709-9

Keywords

Navigation