Skip to main content
Log in

Inductor shape optimization for electromagnetic casting

  • Industrial Application
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The design of inductors in electromagnetic shaping of molten metals consists in looking for the position and the shape of a set of electric wires such that the induced electromagnetic field makes a given mass of liquid metal acquire a predefined shape. In this paper we formulate an inverse optimization problem where the position and shape of the inductors are defined by a set of design variables. In a first formulation of the inverse optimization problem we minimize the difference between the target and the equilibrium shapes while in a second approach we minimize the L 2 norm of a fictitious surface pressure that makes the target shape to be in mechanical equilibrium. Geometric constraints that prevent the inductors from penetrating the liquid metal are considered in both formulations. The optimization problems are solved using FAIPA, a line search interior-point algorithm for nonlinear optimization. Some examples are presented to show the effectiveness of the proposed approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achtziger W (2007) On simultaneous optimization of truss geometry and topology. Struct Multidiscipl Optim 33(4–5):285–304

    Article  MathSciNet  Google Scholar 

  • Allaire G (2007) Conception optimale de structures, mathématiques and applications, vol 58. Springer, Berlin

    Google Scholar 

  • Arora JS, Wang Q (2004) Optimization of large-scale structural systems using sparse SAND formulations. Tech. rep., Optimal Design Lab/CCAD, College of Engineering/4110 SC, The University of Iowa, Iowa City, IA 52242

  • Arora JS, Wang Q (2005) Review of formulations for structural and mechanical system optimization. Struct Multidiscipl Optim 30(4):251–272

    Article  MathSciNet  Google Scholar 

  • Brancher JP, Séro-Guillaume OE (1985) Étude de la déformation d’un liquide magnétique. Arch Ration Mech Anal 90(1):57–85

    Article  MATH  Google Scholar 

  • Canelas A, Herskovits J, Telles JCF (2007) Shape optimization using the boundary element method and a SAND interior point algorithm for constrained optimization. Comput Struct 86(13–14):1517–1526

    Google Scholar 

  • Canelas A, Roche JR, Herskovits J (2008) The inverse electromagnetic shaping problem. Struct Multidiscipl Optim. doi:10.1007/s00158-008-0285-9

    Google Scholar 

  • Choi KK, Kim NH (2004) Structural sensitivity analysis and optimization 1 and 2. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Coulaud O, Henrot A (1994) Numerical approximation of a free boundary problem arising in electromagnetic shaping. SIAM J Numer Anal 31(4):1109–1127

    Article  MATH  MathSciNet  Google Scholar 

  • Felici TP, Brancher JP (1991) The inverse shaping problem. Eur J Mech B Fluids 10(5):501–512

    MATH  MathSciNet  Google Scholar 

  • Fu HZ, Shen J, Liu L, Hao QT, Li SM, Li JS (2004) Electromagnetic shaping and solidification control of Ni-base superalloys under vacuum. J Mater Process Technol 148(1):25–29

    Article  Google Scholar 

  • Gagnoud A, Etay J, Garnier M (1986) Le problème de frontière libre en lévitation électromagnétique. J Méc Théor Appl 5(6):911–934

    MATH  Google Scholar 

  • Haftka RT (1985) Simultaneous analysis and design. AIAA J 23(7):1099–1103

    Article  MATH  MathSciNet  Google Scholar 

  • Haftka RT, Kamat MP (1989) Simultaneous nonlinear structural analysis and design. Comput Mech 4(6):409–416

    Article  MATH  Google Scholar 

  • Henrot A, Pierre M (1989) Un probléme inverse en formage de métaux liquides. Modél Math Anal Numér 23(1):155–177

    MATH  MathSciNet  Google Scholar 

  • Henrot A, Brancher JP, Pierre M (1989) Existence of equilibria in electromagnetic casting. In: Proceedings of the fifth international symposium on numerical methods in engineering. Comput Mech, vol 1, 2 (Lausanne, 1989). Southampton, pp 221–228

  • Herskovits J (1998) Feasible direction interior-point technique for nonlinear optimization. J Optim Theory Appl 99(1):121–146

    Article  MATH  MathSciNet  Google Scholar 

  • Herskovits J, Laporte E, Le Tallec P, Santos G (1996) A quasi-Newton interior point algorithm applied to constrained optimum design in computational fluid dynamics. Rev Européenne Élém Finis 5(5–6):595–617

    MATH  Google Scholar 

  • Herskovits J, Mappa P, Goulart E, Mota Soares CM (2005) Mathematical programming models and algorithms for engineering design optimization. Comput Methods Appl Mech Eng 194(30–33):3244–3268

    Article  MATH  MathSciNet  Google Scholar 

  • Kress R (1999) Linear integral equations, applied mathematical sciences, vol 82, 2nd edn. Springer, New York

    Google Scholar 

  • Moffatt HK (1985) Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology I Fundamentals. J Fluid Mech 159:359–378

    Article  MATH  MathSciNet  Google Scholar 

  • Murat S, Simon J (1976) Sur le contrôle par un domaine géométrique. Tech rep 76015, Laboratoire d’Analyse Numérique, Université de Paris

  • Nédélec JC (1977) Approximation des équations intégrales en mécanique et en physique. Tech rep, Centre de mathématiques appliquées, Ecole Polytechnique

  • Novruzi A (1997) Contribution en optimization de formes et applications. PhD thesis, Université Henri Poincaré, Nancy 1

  • Novruzi A, Pierre M (2002) Structure of shape derivatives. J Evol Equ 2(3):365–382

    Article  MathSciNet  Google Scholar 

  • Novruzi A, Roche JR (1995) Second order derivatives, Newton method, application to shape optimization. Tech. Rep. RR-2555, INRIA

  • Novruzi A, Roche JR (2000) Newton’s method in shape optimisation: a three-dimensional case. BIT 40(1):102–120

    Article  MATH  MathSciNet  Google Scholar 

  • Pierre M, Roche JR (1991) Computation of free surfaces in the electromagnetic shaping of liquid metals by optimization algorithms. Eur J Mech B Fluids 10(5):489–500

    MATH  MathSciNet  Google Scholar 

  • Pierre M, Roche JR (1993) Numerical simulation of tridimensional electromagnetic shaping of liquid metals. Numer Math 65(2):203–217

    Article  MATH  MathSciNet  Google Scholar 

  • Pierre M, Rouy E (1996) A tridimensional inverse shaping problem. Comm Partial Differ Equ 21(7–8):1279–1305

    MATH  MathSciNet  Google Scholar 

  • Roche JR (1996) Algorithmes numériques en optimization de formes et électromagnétisme, mémoire d’Habilitation à Diriger des Recherches

  • Roche JR (1997) Gradient of the discretized energy method and discretized continuous gradient in electromagnetic shaping simulation. Appl Math Comput Sci 7(3):545–565

    MATH  MathSciNet  Google Scholar 

  • Séro-Guillaume OE, Zouaoui D, Bernardin D, Brancher JP (1992) The shape of a magnetic liquid drop. J Fluid Mech 241:215–232

    Article  MATH  MathSciNet  Google Scholar 

  • Shercliff JA (1981) Magnetic shaping of molten metal columns. Proc R Soc Lond A 375:455–473

    Article  Google Scholar 

  • Simon J (1980) Differentiation with respect to the domain in boundary value problems. Numer Funct Anal Optim 2(7–8):649–687

    MATH  MathSciNet  Google Scholar 

  • Sneyd AD, Moffatt HK (1982) Fluid dynamical aspects of the levitation-melting process. J Fluid Mech 117:45–70

    Article  MATH  MathSciNet  Google Scholar 

  • Sullivan CR (1999) Optimal choice for number of strands in a Litz-wire transformer winding. IEEE Trans Power Electron 14(2):283–291

    Article  Google Scholar 

  • Yi SI, Shin JK, Park GJ (2008) Comparison of MDO methods with mathematical examples. Struct Multidiscipl Optim 35(5):391–402

    Article  Google Scholar 

  • Zhiqiang C, Fei J, Xingguo Z, Hai H, Junze J (2002) Microstructures and mechanical characteristics of electromagnetic casting and direct-chill casting 2024 aluminum alloys. Mater Sci Eng A 327(2):133–137

    Article  Google Scholar 

  • Zouaoui D, Séro-Guillaume OE, Brancher JP (1990) Equilibrium of a magnetic liquid drop: variational approach and computation. Magn Gidrodin 26(4):32–35, 150

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Canelas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canelas, A., Roche, J.R. & Herskovits, J. Inductor shape optimization for electromagnetic casting. Struct Multidisc Optim 39, 589 (2009). https://doi.org/10.1007/s00158-009-0386-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-009-0386-0

Keywords

Navigation