Skip to main content
Log in

Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Ultra-light cellular materials exhibit high stiffness/strength to weight ratios and bring opportunity for multifunctional performance. One of their potential applications is to build structure with optimum dynamic performance, which is extremely important for some structural parts in vehicle engineering and attracts a great attention. This paper presents a two-scale optimization method and aims at finding optimal configurations of macro structures and micro-structures of cellular material with maximum structural fundamental frequency. In this method macro and micro densities are introduced as independent design variables for macrostructure and microstructure. Optimizations at two scales are integrated into one system through homogenization theory and base material is distributed between the two scales automatically with optimization model. Microstructure of materials is assumed to be homogeneous at the macro scale to meet today’s manufacture practice and reduce manufacturing cost. Plane structure with homogeneous cellular material and perforated plate are studied. Numerical experiments validate the proposed method and computational model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire G (2002) Shape optimization by the homogenization method. Springer, New York

    MATH  Google Scholar 

  • Allaire G, Jouve F (2005) A level-set method for vibration and multiple loads structural optimization. Comput Methods Appl Mech Eng 194(30–33):3269–3290

    Article  MATH  MathSciNet  Google Scholar 

  • Allaire G, Aubry S, Jouve F (2001) Eigenfrequency optimization in optimal design. Comput Methods Appl Mech Eng 190(28):3565–3579

    Article  MATH  MathSciNet  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. C R Acad Sci Ser 1 Math 334(12):1125–1130

    MATH  MathSciNet  Google Scholar 

  • Artola M, Duvaut G (1977) Homogeneization of a reinforced plate. C R Hebd Seances Acad Sci Ser A Sci Math 284(12):707–710

    MATH  MathSciNet  Google Scholar 

  • Ashby MF, Evans AG, Fleck NA et al (2000) Metal foams: a design guide. Butterworth-Heinemann, Boston

    Google Scholar 

  • Banerjee S, Bhaskar A (2005) Free vibration of cellular structures using continuum modes. J Sound Vib 287(1–2):77–100

    Article  Google Scholar 

  • Bathe KJ (1996) Finite element procedures. Englewood Cliffs, Prentice-Hall, NJ

    Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin

    Google Scholar 

  • Benssousan A, Lions JL, Papanicoulau G (1978) Asymptotic analysis for periodic structures. North Holland, Amesterdam

    Google Scholar 

  • Borst Rd (2008) Challenges in computational materials science: multiple scales, multi-physics and evolving discontinuities. Comput Mater Sci 43(1):1–15

    Article  Google Scholar 

  • Brittain ST, Sugimura Y, Schueller OJA et al (2001) Fabrication and mechanical performance of a mesoscale space-filling truss system. J Microelectromechanical Syst 10(1):113–120

    Article  Google Scholar 

  • Cheng G, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17(3):305–323

    Article  MATH  MathSciNet  Google Scholar 

  • Cheng G, Wang B (2007) Constraint continuity analysis approach to structural topology optimization with frequency objective/constraints. In: Kwak BM et al (eds) Proceeding of the 7th world congress of structural and multidisciplinary optimization, Seoul, Korea, pp 2072

  • Cherkaev A (2000) Variational methods for structural optimization. Springer, New York

    MATH  Google Scholar 

  • Cochran JK, Lee KJ, McDowell D et al (2002) Multifunctional metallic honeycombs by thermal chemical processing. In: Ghosh A et al (eds) Processing and properties of lightweight cellular metals and structures. TMS, Warrendale, PA, pp 127

  • Cox SJ (1995) The generalized gradient at a multiple eigenvalue. J Funct Anal 133(1):30–40

    Article  MATH  MathSciNet  Google Scholar 

  • De Gournay F (2006) Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J Control Optim 45(1):343–367

    Article  MATH  MathSciNet  Google Scholar 

  • Deshpande VS, Fleck NA, Ashby MF (2001) Effective properties of the octet-truss lattice material. J Mech Phys Solids 49:1747–1769

    Article  MATH  Google Scholar 

  • Diaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35(12):1487–1502

    Article  MATH  MathSciNet  Google Scholar 

  • Du JB, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidisc Optim 34(2):91–110

    Article  MathSciNet  Google Scholar 

  • Eschenauer H, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–389

    Article  Google Scholar 

  • Evans AG, Hutchinson JW, Fleck NA et al (2001) The topological design of multifunctional cellar metals. Prog Mater Sci 46(3–4):309–327

    Article  Google Scholar 

  • Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  • Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MATH  MathSciNet  Google Scholar 

  • Hassani B, Hinton E (1998) A review of homogenization and topology optimization I, II. Comput Struct 69(6):707–738

    Article  MATH  Google Scholar 

  • Haug EJ, Rousselet B (1980) Design sensitivity analysis in structural mechanics. II. Eigenvalue variations. J Struct Mech 8(8):161–186

    MathSciNet  Google Scholar 

  • Hayes AM, Wang AJ, Dempsey BM et al (2004) Mechanics of linear cellular alloys. Mech Mater 36(8):691–713

    Article  Google Scholar 

  • Hohe J, Becker W (2002) Effective stress–strain relations for two-dimensional cellular sandwich cores: homogenization, material models, and properties. Appl Mech Rev 55(1):61–87

    Article  Google Scholar 

  • Hyun S, Torquato S (2002) Optimal and manufacturable two-dimensional, Kagome-like cellular solids. J Mater Res 17:137–144

    Article  Google Scholar 

  • Jensen JS, Pedersen NL (2006) On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases. J Sound Vib 289(4–5):967–986

    Article  Google Scholar 

  • Kooistra GW, Deshpande VS, Wadley HNG (2004) Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium. Acta Mater 52(14):4229–4237

    Article  Google Scholar 

  • Krog LA, Olhoff N (1999) Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct 72(4):535–563

    Article  MATH  Google Scholar 

  • Lipperman F, Fuchs MB, Ryvkin M (2008) Stress localization and strength optimization of frame material with periodic microstructure. Comput Methods Appl Mech Eng 197(45–48):4016–4026

    Article  Google Scholar 

  • Liu L, Yan J, Cheng G (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13–14):1417–1425

    Article  Google Scholar 

  • Liu S, Cheng G, Gu Y et al (1998) Homogenization-based method for bending analysis of perforated plate. Acta Mech Solida Sinica 11(2):172–179

    Google Scholar 

  • Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1–4):259–280

    Article  MATH  MathSciNet  Google Scholar 

  • Ma ZD, Kikuchi N, Pierre C et al (2006) Multidomain topology optimization for structural and material designs. J Appl Mech 73(4):565–573

    Article  MATH  MathSciNet  Google Scholar 

  • Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidisc Optim 20(1):2–11

    Article  Google Scholar 

  • Rodrigues H, Guedes JM, Bendsoe MP (2002) Hierarchical optimization of material and structure. Struct Multidisc Optim 24(1):1–10

    Article  Google Scholar 

  • Rozvany G, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–252

    Article  Google Scholar 

  • Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory, lecture notes in physics, vol 127. Springer, Berlin

    Google Scholar 

  • Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227

    Article  Google Scholar 

  • Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20(4):351–368

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos Trans R Soc Lond Ser A Math Phys Sci 361(1806):1001–1019

    Article  MATH  MathSciNet  Google Scholar 

  • Tartar L (2000) An introduction to the homogenization method in optimal design in optimal shape design (Troia, 1998). In: Cellina A, Ornelas A (eds) Lecture notes in mathematics, vol 1740. Springer, Berlin, pp 47–156

    Google Scholar 

  • Wallach JC, Gibson LJ (2001) Mechanical behavior of a three-dimensional truss material. Int J Solids Struct 38:7181–7196

    Article  MATH  Google Scholar 

  • Wang XL, Stronge WJ (1999) Micropolar theory for two-dimensional stresses in elastic honeycomb. Proc R Soc Lond A Math Phys Sci 455(1986):2091–2116

    Article  MATH  MathSciNet  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    Article  MATH  MathSciNet  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

  • Xue Z, Hutchinson JW (2003) Preliminary assessment of sandwich plates subject to blast loads. Int J Mech Sci 45:687–705

    Article  MATH  Google Scholar 

  • Yan J, Cheng G, Liu S et al (2006) Comparison of prediction on effective elastic property and shape optimization of truss material with periodic microstructure. Int J Mech Sci 48(4):400–413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gengdong Cheng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, B., Yan, J. & Cheng, G. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidisc Optim 39, 115–132 (2009). https://doi.org/10.1007/s00158-008-0334-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-008-0334-4

Keywords

Navigation