Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency

  • Bin Niu
  • Jun Yan
  • Gengdong ChengEmail author


Ultra-light cellular materials exhibit high stiffness/strength to weight ratios and bring opportunity for multifunctional performance. One of their potential applications is to build structure with optimum dynamic performance, which is extremely important for some structural parts in vehicle engineering and attracts a great attention. This paper presents a two-scale optimization method and aims at finding optimal configurations of macro structures and micro-structures of cellular material with maximum structural fundamental frequency. In this method macro and micro densities are introduced as independent design variables for macrostructure and microstructure. Optimizations at two scales are integrated into one system through homogenization theory and base material is distributed between the two scales automatically with optimization model. Microstructure of materials is assumed to be homogeneous at the macro scale to meet today’s manufacture practice and reduce manufacturing cost. Plane structure with homogeneous cellular material and perforated plate are studied. Numerical experiments validate the proposed method and computational model.


Two-scale topology optimization Eigenfrequency design Ultralight material Homogenization 


  1. Allaire G (2002) Shape optimization by the homogenization method. Springer, New YorkzbMATHGoogle Scholar
  2. Allaire G, Jouve F (2005) A level-set method for vibration and multiple loads structural optimization. Comput Methods Appl Mech Eng 194(30–33):3269–3290zbMATHCrossRefMathSciNetGoogle Scholar
  3. Allaire G, Aubry S, Jouve F (2001) Eigenfrequency optimization in optimal design. Comput Methods Appl Mech Eng 190(28):3565–3579zbMATHCrossRefMathSciNetGoogle Scholar
  4. Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. C R Acad Sci Ser 1 Math 334(12):1125–1130zbMATHMathSciNetGoogle Scholar
  5. Artola M, Duvaut G (1977) Homogeneization of a reinforced plate. C R Hebd Seances Acad Sci Ser A Sci Math 284(12):707–710zbMATHMathSciNetGoogle Scholar
  6. Ashby MF, Evans AG, Fleck NA et al (2000) Metal foams: a design guide. Butterworth-Heinemann, BostonGoogle Scholar
  7. Banerjee S, Bhaskar A (2005) Free vibration of cellular structures using continuum modes. J Sound Vib 287(1–2):77–100CrossRefGoogle Scholar
  8. Bathe KJ (1996) Finite element procedures. Englewood Cliffs, Prentice-Hall, NJGoogle Scholar
  9. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRefGoogle Scholar
  10. Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRefGoogle Scholar
  11. Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, BerlinGoogle Scholar
  12. Benssousan A, Lions JL, Papanicoulau G (1978) Asymptotic analysis for periodic structures. North Holland, AmesterdamGoogle Scholar
  13. Borst Rd (2008) Challenges in computational materials science: multiple scales, multi-physics and evolving discontinuities. Comput Mater Sci 43(1):1–15CrossRefGoogle Scholar
  14. Brittain ST, Sugimura Y, Schueller OJA et al (2001) Fabrication and mechanical performance of a mesoscale space-filling truss system. J Microelectromechanical Syst 10(1):113–120CrossRefGoogle Scholar
  15. Cheng G, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17(3):305–323zbMATHCrossRefMathSciNetGoogle Scholar
  16. Cheng G, Wang B (2007) Constraint continuity analysis approach to structural topology optimization with frequency objective/constraints. In: Kwak BM et al (eds) Proceeding of the 7th world congress of structural and multidisciplinary optimization, Seoul, Korea, pp 2072Google Scholar
  17. Cherkaev A (2000) Variational methods for structural optimization. Springer, New YorkzbMATHGoogle Scholar
  18. Cochran JK, Lee KJ, McDowell D et al (2002) Multifunctional metallic honeycombs by thermal chemical processing. In: Ghosh A et al (eds) Processing and properties of lightweight cellular metals and structures. TMS, Warrendale, PA, pp 127Google Scholar
  19. Cox SJ (1995) The generalized gradient at a multiple eigenvalue. J Funct Anal 133(1):30–40zbMATHCrossRefMathSciNetGoogle Scholar
  20. De Gournay F (2006) Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J Control Optim 45(1):343–367zbMATHCrossRefMathSciNetGoogle Scholar
  21. Deshpande VS, Fleck NA, Ashby MF (2001) Effective properties of the octet-truss lattice material. J Mech Phys Solids 49:1747–1769zbMATHCrossRefGoogle Scholar
  22. Diaz AR, Kikuchi N (1992) Solutions to shape and topology eigenvalue optimization problems using a homogenization method. Int J Numer Methods Eng 35(12):1487–1502zbMATHCrossRefMathSciNetGoogle Scholar
  23. Du JB, Olhoff N (2007) Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps. Struct Multidisc Optim 34(2):91–110CrossRefMathSciNetGoogle Scholar
  24. Eschenauer H, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331–389CrossRefGoogle Scholar
  25. Evans AG, Hutchinson JW, Fleck NA et al (2001) The topological design of multifunctional cellar metals. Prog Mater Sci 46(3–4):309–327CrossRefGoogle Scholar
  26. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeGoogle Scholar
  27. Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254zbMATHCrossRefMathSciNetGoogle Scholar
  28. Hassani B, Hinton E (1998) A review of homogenization and topology optimization I, II. Comput Struct 69(6):707–738zbMATHCrossRefGoogle Scholar
  29. Haug EJ, Rousselet B (1980) Design sensitivity analysis in structural mechanics. II. Eigenvalue variations. J Struct Mech 8(8):161–186MathSciNetGoogle Scholar
  30. Hayes AM, Wang AJ, Dempsey BM et al (2004) Mechanics of linear cellular alloys. Mech Mater 36(8):691–713CrossRefGoogle Scholar
  31. Hohe J, Becker W (2002) Effective stress–strain relations for two-dimensional cellular sandwich cores: homogenization, material models, and properties. Appl Mech Rev 55(1):61–87CrossRefGoogle Scholar
  32. Hyun S, Torquato S (2002) Optimal and manufacturable two-dimensional, Kagome-like cellular solids. J Mater Res 17:137–144CrossRefGoogle Scholar
  33. Jensen JS, Pedersen NL (2006) On maximal eigenfrequency separation in two-material structures: the 1D and 2D scalar cases. J Sound Vib 289(4–5):967–986CrossRefGoogle Scholar
  34. Kooistra GW, Deshpande VS, Wadley HNG (2004) Compressive behavior of age hardenable tetrahedral lattice truss structures made from aluminium. Acta Mater 52(14):4229–4237CrossRefGoogle Scholar
  35. Krog LA, Olhoff N (1999) Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives. Comput Struct 72(4):535–563zbMATHCrossRefGoogle Scholar
  36. Lipperman F, Fuchs MB, Ryvkin M (2008) Stress localization and strength optimization of frame material with periodic microstructure. Comput Methods Appl Mech Eng 197(45–48):4016–4026CrossRefGoogle Scholar
  37. Liu L, Yan J, Cheng G (2008) Optimum structure with homogeneous optimum truss-like material. Comput Struct 86(13–14):1417–1425CrossRefGoogle Scholar
  38. Liu S, Cheng G, Gu Y et al (1998) Homogenization-based method for bending analysis of perforated plate. Acta Mech Solida Sinica 11(2):172–179Google Scholar
  39. Ma ZD, Kikuchi N, Cheng HC (1995) Topological design for vibrating structures. Comput Methods Appl Mech Eng 121(1–4):259–280zbMATHCrossRefMathSciNetGoogle Scholar
  40. Ma ZD, Kikuchi N, Pierre C et al (2006) Multidomain topology optimization for structural and material designs. J Appl Mech 73(4):565–573zbMATHCrossRefMathSciNetGoogle Scholar
  41. Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidisc Optim 20(1):2–11CrossRefGoogle Scholar
  42. Rodrigues H, Guedes JM, Bendsoe MP (2002) Hierarchical optimization of material and structure. Struct Multidisc Optim 24(1):1–10CrossRefGoogle Scholar
  43. Rozvany G, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–252CrossRefGoogle Scholar
  44. Sanchez-Palencia E (1980) Non-homogeneous media and vibration theory, lecture notes in physics, vol 127. Springer, BerlinGoogle Scholar
  45. Seyranian AP, Lund E, Olhoff N (1994) Multiple eigenvalues in structural optimization problems. Struct Optim 8(4):207–227CrossRefGoogle Scholar
  46. Sigmund O (1995) Tailoring materials with prescribed elastic properties. Mech Mater 20(4):351–368CrossRefMathSciNetGoogle Scholar
  47. Sigmund O, Jensen JS (2003) Systematic design of phononic band-gap materials and structures by topology optimization. Philos Trans R Soc Lond Ser A Math Phys Sci 361(1806):1001–1019zbMATHCrossRefMathSciNetGoogle Scholar
  48. Tartar L (2000) An introduction to the homogenization method in optimal design in optimal shape design (Troia, 1998). In: Cellina A, Ornelas A (eds) Lecture notes in mathematics, vol 1740. Springer, Berlin, pp 47–156Google Scholar
  49. Wallach JC, Gibson LJ (2001) Mechanical behavior of a three-dimensional truss material. Int J Solids Struct 38:7181–7196zbMATHCrossRefGoogle Scholar
  50. Wang XL, Stronge WJ (1999) Micropolar theory for two-dimensional stresses in elastic honeycomb. Proc R Soc Lond A Math Phys Sci 455(1986):2091–2116zbMATHMathSciNetCrossRefGoogle Scholar
  51. Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246zbMATHCrossRefMathSciNetGoogle Scholar
  52. Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896CrossRefGoogle Scholar
  53. Xue Z, Hutchinson JW (2003) Preliminary assessment of sandwich plates subject to blast loads. Int J Mech Sci 45:687–705zbMATHCrossRefGoogle Scholar
  54. Yan J, Cheng G, Liu S et al (2006) Comparison of prediction on effective elastic property and shape optimization of truss material with periodic microstructure. Int J Mech Sci 48(4):400–413CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering MechanicsDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations