Skip to main content
Log in

Fracture resistance via topology optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The fracture resistance of structures is optimized using the level-set method. Fracture resistance is assumed to be related to the elastic energy released by a crack propagating in a normal direction from parts of the boundary that are in tension, and is calculated using the virtual crack extension technique. The shape derivative of the fracture-resistance objective function is derived. Two illustrative two-dimensional case studies are presented: a hole in a plate subjected to biaxial strain; and a bridge fixed at both ends subjected to a single load in which the compliance and fracture resistance are jointly optimized. The structures obtained have rounded corners and more material at places where they are in tension. Based on the results, we propose that fracture resistance may be modeled more easily but less directly by including a term proportional to surface area in the objective function, in conjunction with nonlinear elasticity where the Young’s modulus in tension is lower than in compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire G (2001) Shape optimization by the homogenization method. Springer, New York

    Google Scholar 

  • Allaire G, Jouve F (2005) A level-set method for vibration and multiple loads structural optimization. Comput Methods Appl Mech Eng 194:3269–3290

    Article  MATH  MathSciNet  Google Scholar 

  • Allaire G, Bonnetier E, Francfort G, Jouve F (1997) Shape optimization by the homogenization method. Numer Math 76:27–68

    Article  MATH  MathSciNet  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. C R Acad Sci Paris Ser I 334:1125–1130

    MATH  MathSciNet  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194:363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Allaire G, de Gournay F, Jouve F, Toader AM (2005) Structural optimization using topological and shape sensitivity via a level set method. Control Cybern 34(1):59–80

    MATH  Google Scholar 

  • Amstutz S, Andrä H (2006) A new algorithm for topology optimization using a level-set method. J Comput Phys 216:573–588

    Article  MATH  MathSciNet  Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolations in topology optimization. Arch Appl Mech 69:635–654

    Article  Google Scholar 

  • Bendsøe MP, Sigmund O (2004) Topology optimization, 2nd edn. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Bendsøe MP, Lund E, Olhoff N, Sigmund O (2005) Topology optimization—broadening the areas of application. Control Cybern 34(1):7–35

    MATH  Google Scholar 

  • Burger M, Hackl B, Ring W (2004) Incorporating topological derivatives into level set methods. J Comput Phys 194:334–362

    Article  MathSciNet  Google Scholar 

  • Céa J (1986) Conception optimale ou identification de formes, calcul raide de la dérivée directionnelle de la fonction coût. Math Model Numer Anal 20:371–402

    MATH  MathSciNet  Google Scholar 

  • Garboczi EJ (1998) Finite element and finite difference programs for computing the linear electric and elastic properties of digital images of random materials. Technical report, NISTIR 6269. http://ciks.cbt.nist.gov/garbocz/manual/man.html

  • Garboczi EJ, Day AR (1995) An algorithm for computing the effective linear elastic properties of heterogeneous materials: three-dimensional results for composites with equal phase poisson ratios. J Mech Phys Solids 43:1349–1362

    Article  MATH  Google Scholar 

  • Gomes AA, Suleman A (2006) Application of spectral level set methodology in topology optimization. Struct Multidisc Optim 31:430–443

    Article  MathSciNet  Google Scholar 

  • de Gournay F (2006) Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J Control Optim 45:343–367

    Article  MATH  MathSciNet  Google Scholar 

  • Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond A 221:163–198

    Article  Google Scholar 

  • Guo X, Zhao K, Wang MY (2005) A new approach for simultaneous shape and topology optimization based on dynamic implicit surface function. Control Cybern 34(1):255–282

    MathSciNet  MATH  Google Scholar 

  • Hellen TK (1975) On the method of virtual crack extensions. Int J Numer Methods Eng 9:187–207

    Article  MATH  Google Scholar 

  • Hintermüller M (2005) Fast level set algorithms using shape and topological sensitivity information. Control Cybern 34:305–324

    MATH  Google Scholar 

  • Lawn BR (1993) Fracture of brittle solids, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Murat F, Simon S (1976) Etudes de problèmes d’optimal design. Lecture Notes in Computer Science, vol. 41. Springer, Berlin

    Google Scholar 

  • Osher SJ, Santosa F (2001) Level set methods for optimization problems involving geometry and constraints I. frequencies of a two-density inhomogeneous drum. J Comput Phys 171:272–288

    Article  MATH  MathSciNet  Google Scholar 

  • Osher SJ, Sethian JA (1988) Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton–Jacobi formulation. J Comput Phys 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  • Parks DM (1974) A stiffness derivative finite element technique for determination of crack tip stress intensity factors. Int J Fract 10:487–502

    Article  Google Scholar 

  • Rice JR (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks. J Appl Mech 35:379–386

    Google Scholar 

  • Samet B (2003) The topological asymptotic with respect to a singular boundary perturbation. C R Acad Sci Paris Ser I 336:1033–1038

    MATH  MathSciNet  Google Scholar 

  • Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528

    Article  MATH  MathSciNet  Google Scholar 

  • Simon J (1980) Differentiation with respect to the domain in boundary value problems. Numer Funct Anal Optim 2:649–687

    Article  MATH  MathSciNet  Google Scholar 

  • Sokołowski J, Zolesio JP (1992) Introduction to shape optimization: shape sensitivity analysis. In: Springer series in computational mathematics, vol. 10. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93:291–318

    Article  MATH  Google Scholar 

  • Wang MY, Wang X (2004) “Color” level sets: a multi-phase method for structural topology optimization with multiple materials. Comput Methods Appl Mech Eng 193:469–496

    Article  MATH  Google Scholar 

  • Wang MY, Wang X (2005) A level-set based variational method for design and optimization of heterogeneous objects. Comput-Aided Des 37:321–337

    Article  Google Scholar 

  • Wang S, Wang MY (2006a) A moving superimposed finite element method for structural topology optimization. Int J Numer Methods Eng 65:1892–1922

    Article  MATH  Google Scholar 

  • Wang S, Wang MY (2006b) Radial basis functions and level set method for structural topology optimization. Int J Numer Methods Eng 65:2060–2090

    Article  MATH  Google Scholar 

  • Wang SY, Wang MY (2006c) Structural shape and topology optimization using an implicit free boundary parameterization method. Comput Model Eng Sci 13(2):119–147

    Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MATH  MathSciNet  Google Scholar 

  • Wang X, Wang MY, Guo D (2004) Structural shape and topology optimization in a level-set-based framework of region representation. Struct Multidisc Optim 27:1–19

    Article  MathSciNet  Google Scholar 

  • Wang MY, Chen SK, Wang XM, Mei YL (2005) Design of multimaterial compliant mechanisms using level-set methods. J Mech Des 127:941–956

    Article  Google Scholar 

  • Wilke DN, Kok S, Groenwold AA (2006) A quadratically convergent unstructured remeshing strategy for shape optimization. Int J Numer Meth Eng 65:1–17

    Article  MATH  Google Scholar 

  • Yulin M, Xiaoming W (2004) A level set method for structural topology optimization and its applications. Adv Eng Softw 35:415–441

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew H. Wilkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Challis, V.J., Roberts, A.P. & Wilkins, A.H. Fracture resistance via topology optimization. Struct Multidisc Optim 36, 263–271 (2008). https://doi.org/10.1007/s00158-007-0160-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-007-0160-0

Keywords

Navigation