Skip to main content
Log in

Stress concentration minimization of 2D filets using X-FEM and level set description

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper presents and applies a novel shape optimization approach based on the level set description of the geometry and the extended finite element method (X-FEM). The method benefits from the fixed mesh work using X-FEM and from the curves smoothness of the level set description. Design variables are shape parameters of basic geometric features that are described with a level set representation. The number of design variables of this formulation remains small, whereas global (i.e. compliance) and local constraints (i.e. stresses) can be considered. To illustrate the capability of the method to handle stress constraints, numerical applications revisit the minimization of stress concentration in a 2D filet in tension, which has been previously studied in Pedersen (2003). Our results illustrate the great interest of using X-FEM and level set description together. A special attention is also paid to stress computation and accuracy with the X-FEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allaire G, Jouve F, Maillot H (2004) Topology optimization for minimum stress design with the homogenization method. Struct Multidiscipl Optim 28(2-3):87–98

    Article  MathSciNet  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MATH  MathSciNet  Google Scholar 

  • Belytschko T, Moës N, Usui S, Parimi C (2001) Arbitrary discontinuities in finite elements. Int J Numer Methods Eng 50:993–1013

    Article  MATH  Google Scholar 

  • Belytschko T, Parimi C, Moës N, Sukumar N, Usui S (2003) Structured extended finite element methods for solids defined by implicit surfaces. Int J Numer Methods Eng 56:609–635

    Article  MATH  Google Scholar 

  • Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57:1177–1196

    Article  MATH  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MATH  Google Scholar 

  • Bennet JA, Botkin E (1985) Structural shape optimization with geometric description and adaptive mesh refinement. AIAA J 23(3):458–464

    Article  Google Scholar 

  • Braibant V, Fleury C (1984) Shape optimal design using b-splines. Comput Methods Appl Mech Eng 44:247–267

    Article  MATH  Google Scholar 

  • Chessa J, Belytschko T (2003) An extended finite element method for two-phase fluids. J Appl Mech 70:10–17

    Article  MathSciNet  MATH  Google Scholar 

  • Dankova J, Haslinger J (1996) Numerical realization of a fictitious domain approach used in shape optimization. Part I distributed controls. Appl Math 41:123–147

    MATH  MathSciNet  Google Scholar 

  • Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T (2000) Arbitrary branched and intersecting cracks with the extended finite element method. Int J Numer Methods Eng 48:1741–1760

    Article  MATH  Google Scholar 

  • Ding Y (1986) Shape optimization of structures: a literature survey. Comput Struct 24(4):985–1004

    Article  MATH  Google Scholar 

  • Duysinx P, Bendsøe MP (1998) Control of local stresses in topology optimization of continuum structures. Int J Numer Methods Eng 43:1453–1478

    Article  MATH  Google Scholar 

  • Duysinx P, Van Miegroet L, Jacobs T, Fleury C (2006) Generalized shape optimization using X-FEM and level set methods. IUTAM Symposium on Topological Design, Optimization of Structures, Machines and Materials. Springer, Berlin Hiedelberg New York, pp 23–32

    Google Scholar 

  • Fleury C (1989) Conlin: an efficient dual optimizer based on convex approximation concepts. Struct Multidiscipl Optim 1:81–89

    Google Scholar 

  • Guétari Y, Le Corre S, Moës N (2005) Étude des possibilités de la méthode X-FEM pour la simulation numérique de la coupe. Mécanique et Industries 6:315–319

    Article  Google Scholar 

  • Haftka R, Grandhi R (1986) Structural shape optimization — a survey. Comput Methods Appl Mech Eng 57:91–106

    Article  MATH  MathSciNet  Google Scholar 

  • Kim H, Querin OM, Steven GP, Xie YM (2002) Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh. Struct Multidiscipl Optim 24:441–448

    Article  Google Scholar 

  • Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46:131–150

    Article  MATH  Google Scholar 

  • Moës N, Gravouil A, Belytschko T (2002) Non-planar 3d crack growth by the extended finite element and level sets — part i: mechanical model. Int J Numer Methods Eng 53:2549–2568

    Article  MATH  Google Scholar 

  • Moës N, Cloirec M, Cartraud P, Remacle JF (2003) A computational approach to handle complex microstructure geometries. Comput Methods Appl Mech Eng 192:3163–3177

    Article  MATH  Google Scholar 

  • Norato J, Haber R, Tortorelli D, Bendsøe MP (2004) A geometry projection method for shape optimization. Int J Numer Methods Eng 60:2289–2312

    Article  MATH  Google Scholar 

  • Novotny AA, Feijoo RA, Taroco E, Padra C (2003) Topological sensitivity analysis. Comput Methods Appl Mech Eng 192:803–829

    Article  MATH  MathSciNet  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79:12–49

    Article  MATH  MathSciNet  Google Scholar 

  • Pedersen P (2000) On optimal shapes in materials and structures. Struct Optim 19(3):169–182

    Article  Google Scholar 

  • Pedersen P (2003) Optimal designs — structures and materials - problems and tools. ISBN 87-90416-06-6. http://www.fam.web.mek.dtu.dk/pp.html

  • Pedersen P, Laursen C (1983) Design for minimum stress concentration by finite element and linear programming. J Struct Mech 10(4):375–391

    Google Scholar 

  • Pereira J, Fancello E, Barcellos D (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidiscipl Optim 26(1-2):50–66

    Article  MathSciNet  Google Scholar 

  • Peterson RE (1953) Stress concentration design factors. Wiley, New York

    Google Scholar 

  • Rozvany GIN (1996) Some shortcomings in Michell’s truss theory. Struct Optim 12: 44–250

    Article  Google Scholar 

  • Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272

    Article  MATH  MathSciNet  Google Scholar 

  • Sukumar N, Chopp DL, Moes N, Belytschko T (2001) Modeling holes and inclusions by level sets in the extended finite-element method. Comput Methods Appl Mech Eng 190:6183–6200

    Article  MATH  MathSciNet  Google Scholar 

  • Van Miegroet L, Moës N, Fleury C, Duysinx P (2005) Generalized shape optimization based on the level set method. In: Herskowitz J (ed) Proceedings of the 6th World Congress of Structural and Multidisciplinary Optimization. Rio de Janeiro, Brazil

  • Van Miegroet L, Lemaire E, Jacobs T, Dusyinx P (2006) Stress constrained optimization using X-FEM and level set description. In: Mota Soares CA (ed)Proceeding of 3rd European Conference on Computational Mechanics. Shape and topological sensitivity analysis: theory and applications. Lisbon, Portugal

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192:227–246

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang S, Belegundu AD (1992) A systematic approach for generating velocity fields in shape optimization. Struct Multidiscipl Optim 5(1-2)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Van Miegroet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Miegroet, L., Duysinx, P. Stress concentration minimization of 2D filets using X-FEM and level set description. Struct Multidisc Optim 33, 425–438 (2007). https://doi.org/10.1007/s00158-006-0091-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-006-0091-1

Keywords

Navigation