Skip to main content
Log in

Nonlinear diffusions in topology optimization

  • Research paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Filtering has been a major technique used in homogenization-based methods for topology optimization of structures. It plays a key role in regularizing the basic problem into a well-behaved setting, but it has the drawback of a smoothing effect around the boundary of the material domain. In this paper, a diffusion technique is presented as a variational approach to the regularization of the topology optimization problem. A nonlinear or anisotropic diffusion process not only leads to a suitable problem regularization but also exhibits strong “edge”-preserving characteristics. Thus, we show that the use of nonlinear diffusions brings the desirable effects of boundary preservation and even enhancement of lower-dimensional features such as flow-like structures. The proposed diffusion techniques have a close relationship with the diffusion methods and the phase-field methods from the fields of materials and digital image processing. The proposed method is described and illustrated with 2D examples of minimum compliance that have been extensively studied in recent literature of topology optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allaire, G. 2001: Shape Optimization by the Homogenization Method. Berlin Heidelberg New York: Springer

  2. Allaire, G.; Jouve, F.; Taoder, A.-M. 2004: Structural optimization using sensitivity analysis and a level-set method. J Comput Phys194, 363–393

    Google Scholar 

  3. Aubert, G.; Kornprobst, P. 2000: Mathematical Problems in Image Processing. Berlin Heidelberg New York: Springer

  4. Bendsoe, M.P.; Sigmund, O. 2003: Topology Optimization: Theory, Methods and Applications. Berlin Heidelberg New York: Springer

  5. Bendsoe, M.P. 1999: Variable-topology optimization: Status and challenges. Proceedings of the European Conference on Computational Mechanics (W. Wunderlich editor) (held in Munich, Germany)

  6. Bendsoe, M.P.; Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenisation method. Comput Methods Appl Mech Eng71, 197–224

    Google Scholar 

  7. Bendsoe, M.P.; Sigmund, O. 1999: Material interpolations in topology optimization. Arch Appl Mech69, 635–654

    Google Scholar 

  8. Bourdin, B. 2001: Filters in topology optimization. Int J Numer Methods Eng50, 2143–2158

    Google Scholar 

  9. Bourdin, B.; Chambolle, A. 2003: Design-dependent loads in topology optimization. ESAIM Control Optim Calc Var9, 19–48

    Google Scholar 

  10. Cahn, J.; Hilliard, J.E. 1958: Free energy of a nonuniform system. I. Interfacial free energy. J Chem Phys28(1), 258–267

    Google Scholar 

  11. Cea, J.; Malanowski, K. 1970: An example of a max-min problem in partial differential equations. SIAM J Control8, 305–316

    Google Scholar 

  12. Charbonnier, P.; Blanc-Feraud, L.; Aubert, G.; Barlaud, M. 1997: Deterministic edge-reserving regularization in computed imaging. IEEE Trans Image Process6(2), 298–311

    Google Scholar 

  13. Cheng, K.-T.; Olhoff, N. 1981: An investigation concerning optimal design of solid elastic plates. Int J Solids Struct17, 305–323

    Google Scholar 

  14. Diaz, R.; Sigmund, O. 1995: Checkerboards patterns in layout optimization. Struct Optim10, 10–45

    Google Scholar 

  15. Eyre, D. 1993: Systems of Cahn-Hilliard equations. SIAM J Appl Math53(6), 1686–1712

    Google Scholar 

  16. Guo, X.; Gu, Y. 2004: A new density-stiffness interpolation scheme for topology optimization of continuum structures. Eng Comput21(1), 9–22

    Google Scholar 

  17. Haber, R.B.; Jog, C.S.; Bendsoe, M.P. 1996: A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim11, 1–12

    Google Scholar 

  18. Leo, P.H.; Lowengrub, J.S.; Jou, H.J. 1998: A diffuse interface model for microstructural evolution in elastically stressed solids. Acta Mater46(6), 2113–2130

    Google Scholar 

  19. Murat, F. 1972: Théorèmes de non-existence pour des problèmes de contrôle dans les coeffcients. C R Acad Sci ParisA-274, 395–398

  20. Murat, F. 1977: Contre-exemples pour divers problèmes où le contrôle intervient dans les coeffcients. Ann Mat Pura Appl112, 49–68

    Google Scholar 

  21. Osher, S.; Santosa, F. 2001: level-set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum. J Comput Phys171, 272–288

    Google Scholar 

  22. Petersson, J. 1999: Some convergence results in perimeter-controlled topology optimization. Comput Methods Appl Mech Eng171, 123–140

    Google Scholar 

  23. Rozvany, G. 1989: Structural Design via Optimality Criteria. Dordrecht: Kluwer

  24. Rozvany, G.; Zhou, M. 1991: The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng89, 309–336

    Google Scholar 

  25. Rozvany, G.; Zhou, M.; Birker, T. 1992: Generalized shape optimization without homogenization. Struct Optim4, 250–252

    Google Scholar 

  26. Ruiter, De M.J.; Keulen, van F. 2000: Topology optimization: Approaching the material distribution problem using a topological function description. In Topping, B.H.V. (ed.), Computational Techniques for Materials, Composites and Composite Structures, 111–119. Edinburgh, UK: Civil-Comp

  27. Samson, C.; Blanc-Feraud, L.; Aubert, G.; Zerubia, J. 2000: A variational model for image classification and restoration. IEEE Trans Pattern Anal Mach Intell22(5), 460–472

    Google Scholar 

  28. Sapiro, G. 2001: Geometric Partial Differential Equations and Image Analysis. Cambridge: Cambridge University

  29. Sethian, J.; Wiegmann, A. 2000: Structural boundary design via level-set and immersed interface methods. J Comput Phys163, 489–528

    Google Scholar 

  30. Sigmund, O.; Petersson, J. 1998: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim16(1), 68–75

    Google Scholar 

  31. Tikhonov, A.N.; Arsenin, V.Y. 1997: Solutions of Ill-Posed Problems. Washington: Winston and Sons

  32. Wang, M.Y.; Wang, X.M.; Guo, D.M. 2003: A level set method for structural topology optimization. Comput Methods Appl Mech Eng192(1–2), 227–246

    Google Scholar 

  33. Wang, X.M.; Wang, M.Y.; Guo, D.M. 2004: Structural shape and topology optimization in a level-set based framework of region representation. Struct Multidisc Optim27(1–2), 1–19

    Google Scholar 

  34. Wang, M.Y.; Zhou, S.W. 2004: A variational method for structural topology optimization. Proc. of Second International Conference on Structural Engineering, Mechanics and Computation (held in Cape Town, South Africa)

  35. Wang, M.Y.; Zhou, S.W. 2003: A phase-field method for structural topology optimization. submitted for publication. preprint

  36. Warren, J.A. 1995: How does a metal freeze? A phase-field model of alloy solidification. IEEE Comput Sci Eng2(2), 38–48

    Google Scholar 

  37. Weickert, J. 1997: A review of nonlinear diffusion filtering, Scale-Space Theory in Computer Vision. ter Haar Romeny, B. et al. (ed.), Lect Notes Comput Sci1252, 3–28, Berlin: Springer

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.Y. Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Zhou, S. & Ding, H. Nonlinear diffusions in topology optimization. Struct Multidisc Optim 28, 262–276 (2004). https://doi.org/10.1007/s00158-004-0436-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-004-0436-6

Keywords

Navigation