We first lay out a series of definitions and lemmas before presenting the proof of Theorem B.
Definition 4.1
A structure \(\mathcal {N}\) is \(\mathrm {Cod }_{W}({\mathcal {M}})\)-saturated if for every type \(p(x,y_{1},\cdot \cdot \cdot ,y_{k})\), and for every k-tuple \(\overline{a}\) of parameters from \(\mathcal {N}\), \(p(x,\overline{a})\) is realized in \(\mathcal {N}\) provided the following three conditions are satisfied:
- (i):
-
\(p(x,\overline{y})\subseteq \mathbb {L}_{{\mathcal {M}}}\).
- (ii):
-
\(p(x,\overline{y})\in \mathrm {Cod}_{W}({\mathcal {M}})\).
- (iii):
-
\(\forall w\in W\ \mathcal {N}\models \exists x\left( \bigwedge \limits _{\varphi \in p(x,\overline{y})\cap w}\varphi (x,\overline{a} )\right) .\)
Remark 4.1.1. It is not hard to see that if \({\mathcal {M}}\) is \(\omega \)-nonstandard, then \({\mathcal {M}}\) is W-saturated iff \(\mathcal {M }\) is recursively saturated. We should also point out that a notion closely related to \(\mathrm {Cod}_{W}({\mathcal {M}})\)-saturation was introduced in Ressayre’s paper [14] (dubbed \(\alpha \)-recursive saturation) where it was used as a tool for studying the model theory of admissible languages, as well as certain aspects of descriptive set theory (see also Barwise [1, p.143], Schlipf [16, p.164–165]). A trick similar to the one that shows that recursive saturation coincides with W-saturation for \(\omega \)-nonstandard models can be used to show that, more generally, if \({\mathcal {M}}\) is nonstandard, then \({\mathcal {M}}\) is W-saturated iff \({\mathcal {M}}\) is \(\mathrm {o }({\mathcal {M}})\)-recursively saturated.
Lemma 4.2
If \(\gamma \) is a limit ordinal of \({\mathcal {M}}\) and \(\gamma \) is nonstandard, then \({\mathcal {M}}(\gamma )\) is W-saturated.
Proof
Given a 1-type \(p(x,\overline{a})\), where \( \overline{a}\) is a k-tuple of parameters from \({\mathcal {M}}(\gamma )\) such that conditions (i), (ii), and (iii) of Definition 4.1 hold, choose \( c\in M(\gamma )\) such that \(p(x,\overline{y})=\mathrm {Ext}_{{\mathcal {M}} (\gamma )}(c)\cap W,\) and let \(\theta (z,\overline{y})\) be the following formula in the language of set theory augmented with a predicate \(\mathrm {S}\) :
$$\begin{aligned} \exists x\left[ \forall \varphi (x,\overline{y})\in c\cap \mathrm {V}(z)\ \mathrm {S}(\varphi (c_{x},c_{y_{1}},\ldots ,c_{y_{k}})\right] . \end{aligned}$$
By Remark 2.4 there is some \(s\in M\) such that \(S:=\mathrm {Ext}_{ {\mathcal {M}}}(s)\) is a separative \(\gamma \)-satisfaction class on \({\mathcal {M}} (\gamma ).\) Since for all \(\alpha \in \mathrm {o}({\mathcal {M}})\), \(\left( {\mathcal {M}}(\gamma ),S\right) \) satisfies \(\theta (\alpha ,\overline{a})\) by Proposition 2.3, \(\theta (\gamma ^{\prime },\overline{a})\) holds in \(\left( {\mathcal {M}}(\gamma ),S\right) \) for some \(\gamma ^{\prime }\in \mathrm {Ord}^{ {\mathcal {M}}(\gamma )}\backslash W\) by Proposition 2.6 (Overspill), which makes it evident that \(p(x,\overline{a})\) is realized in \({\mathcal {M}}(\gamma ).\) Note that a slight modification of the proof shows that, more generally, any structure that “lives” in \({\mathcal {M}} \) (i.e., has an isomorphic copy that is coded in \({\mathcal {M}}\)) is \(\mathrm { Cod}_{W}({\mathcal {M}})\)-saturated. \(\square \)
Lemma 4.3
Given countable nonstandard models \( {\mathcal {M}}\) and \(\mathcal {N}\) of \(\mathrm {ZF}\), \(\mathcal { M}\cong \mathcal {N}\) provided the following two conditions hold :
-
(a)
\({\mathcal {M}}\) and \(\mathcal {N}\) have the same well-founded part W, \(\mathrm {Cod}_{W}({\mathcal {M}} )=\mathrm {Cod}_{W}({\mathcal {M}}),\) and \(\mathrm {ZF}(\mathbb {L})\subseteq \mathrm {Th}_{\mathbb {L}}\mathrm {(}\mathcal {M)}=\mathrm {Th}_{\mathbb {L}} \mathrm {(}\mathcal {N)}\) for \(\mathbb {L}:=\mathbb {L}_{{\mathcal {M}}}= \mathbb {L}_{\mathcal {N}}\).
-
(b)
Both \({\mathcal {M}}\) and \(\mathcal {N}\) are W-saturated.
Proof
This lemma is a distillation of Lemma 3.1 since the proof of Claim 3.1.1 can be readily modified to show that Claim 3.1.1 holds with the assumptions of Lemma 4.3 once we make the observation that the W-saturation of \({\mathcal {M}}\) implies that the \(\mathbb {L}\)-type of any finite tuple in \({\mathcal {M}}\) is a member of \(\mathrm {Cod}_{W}(\mathcal {M })\) (and of course the same goes for \(\mathcal {N}\)). To verify this observation, first consider the following type \(p(x,\overline{y}):\)
$$\begin{aligned} p(x,\overline{y}):=\left\{ \varphi (\overline{y})\leftrightarrow \left( \varphi (\overline{y})\in x\right) :\varphi (y_{1},\ldots ,y_{n})\in \mathbb {L}\right\} . \end{aligned}$$
It is easy to see that \(p(x,\overline{y})\in \mathrm {Cod}_{W}( {\mathcal {M}})\). Given \(\overline{a}\in M^{n}\) and \(\alpha \in \mathrm {o}( {\mathcal {M}})\), for sufficiently large \(\beta \in \mathrm {o}({\mathcal {M}}),\) we have:
For all \(\varphi (\overline{y})\in M(\alpha )\), \({\mathcal {M}}\models \varphi ( \overline{a})\) iff \({\mathcal {M}}\models \mathrm {Sat}_{\beta }(\varphi ( \overline{a})).\)
Together with Proposition 2.5 and the assumption that \({\mathcal {M}} \models \mathrm {ZF}(\mathbb {L})\) we conclude that for each \(\alpha \in \mathrm {o}({\mathcal {M}})\) the set \(\left\{ \varphi (\overline{y})\in M(\alpha ):{\mathcal {M}}\models \varphi (\overline{a})\right\} \) is coded in \(\mathcal {M }\). This makes it evident that the three conditions of Definition 4.1 are met and therefore by the assumption of W-saturation of \({\mathcal {M}}\), there is an element \(c\in M\) such that for all n-ary \(\mathbb {L}\)-formulae \(\varphi (\overline{y})\in \mathbb {L}\), we have:
\({\mathcal {M}}\models \varphi (\overline{a})\) iff \(\varphi (\overline{y})\in \mathrm {Ext}_{{\mathcal {M}}}(c),\)
which shows that the \(\mathbb {L}\)-type of \(\overline{a}\) is a member of \(\mathrm {Cod}_{W}({\mathcal {M}}).\) \(\square \)
Lemma 4.4
Suppose there is an unbounded collection of \(\alpha \in \mathrm {Ord}^{{\mathcal {M}}}\) such that \( \mathcal {M}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}\). Then \({\mathcal {M}}\) is W-saturated.
Proof
This directly follows from Lemma 4.2 and Proposition 2.7 (Elementary Chains). \(\square \)
Lemma 4.5
If there is some \(\alpha \in \mathrm { Ord}^{{\mathcal {M}}}\) with \(\mathcal {M}(\alpha )\prec _{\mathbb {L}_{ {\mathcal {M}}}}{\mathcal {M}}\), then \({\mathcal {M}}\models \mathrm {ZF}( \mathbb {L}_{{\mathcal {M}}})\).
Proof
Since \({\mathcal {M}}\) is assumed to be a model of \( \mathrm {ZF}\), we just need to verify that \({\mathcal {M}}\) satisfies \(\mathrm { Sep}(\mathbb {L}_{{\mathcal {M}}})\) and \(\mathrm {Coll}(\mathbb {L}_{{\mathcal {M}} }). \) In light of the assumption that \(\mathcal {M}(\alpha )\) is an \(\mathbb {L }_{{\mathcal {M}}}\)-elementary submodel of \({\mathcal {M}}\), it suffices to verify that \({\mathcal {M}}(\alpha )\) satisfies \(\mathrm {Sep}(\mathbb {L}_{{\mathcal {M}} }) \) and \(\mathrm {Coll}(\mathbb {L}_{{\mathcal {M}}})\). To see that \(\mathcal {M}(\alpha )\models \mathrm {Sep}(\mathbb {L}_{{\mathcal {M}}})\), suppose \(\psi (x)\in \mathbb {L}_{{\mathcal {M}}}\) (where \(\psi (x)\) is allowed to have parameters from \(M(\alpha ))\), and \(m\in M(\alpha ).\) Consider
\(K:=\left\{ k\in M:\mathcal {M}(\alpha )\models k\in m\wedge \psi (k)\right\} .\)
By Remark 2.4, there is a separative \(\alpha \)-satisfaction class S on \(\mathcal {M}(\alpha )\). Let
\(K^{\prime }:=\left\{ k\in M:\left( {\mathcal {M}}(\alpha ),S\right) \models k\in m\wedge \mathrm {S}(\psi (c_{k}))\right\} \).
By Proposition 2.3, \(K=K^{\prime }\). On the other hand, since S is separative, \(K^{\prime }\) is coded in \(\mathcal {M}(\alpha )\). This concludes the proof that \(\mathrm {Sep}(\mathbb {L}_{{\mathcal {M}}})\) holds in \( {\mathcal {M}}(\alpha )\). To verify that \({\mathcal {M}}(\alpha )\) satisfies \( \mathrm {Coll}(\mathbb {L}_{{\mathcal {M}}}),\) suppose for some \(\varphi (x,y)\in \mathbb {L}_{{\mathcal {M}}}\) and for some m in \(M{(\alpha )}\) we have:
(1) \(\mathcal {M}(\alpha )\models \forall x\in m\) \(\exists y\) \( \varphi (x,y).\)
We need to verify:
(2) \(\mathcal {M}(\alpha )\models \exists z\ \forall x\in m\) \( \exists y\in z\) \(\varphi (x,y).\)
Define f(x) in \({\mathcal {M}}\) to be the unique ordinal \(\alpha \) that satisfies \(\psi (x,\alpha ),\) where
\(\psi (x,\alpha ):=\)
\(\exists y\in \mathrm {V}(\alpha )\)
\(\left( \varphi (x,y)\wedge \left( \forall \beta \in \alpha \ \forall y\in \mathrm {V}(\alpha )\ \lnot \varphi (x,y)\right) \right) .\)
Note that by (1) f is well-defined in \({\mathcal {M}}\) for all \( x\in m\). To establish (2) it suffices to show:
(3) \(\mathcal {M}(\alpha )\models \exists \beta \in \mathrm {Ord\ } \forall x\in m\) \(f(x)<\beta .\)
Suppose (3) is false, then:
(4) \(\mathcal {M}(\alpha )\models \forall \beta \in \mathrm {Ord\ } \exists x\in m\) \(f(x)\ge \beta .\)
So by the assumption \(\mathcal {M}(\alpha )\prec _{\mathbb {L}_{ {\mathcal {M}}}}{\mathcal {M}}\), (4) yields:
(5) \({\mathcal {M}}\models \forall \beta \in \mathrm {Ord\ }\exists x\in m\) \(f(x)\ge \beta .\)
Pick \(\beta \in \mathrm {Ord}^{{\mathcal {M}}}\backslash \mathrm {Ord} ^{\mathcal {M}(\alpha )},\) then by (5) there is some \(m_{0}\in \mathrm {Ext}_{ {\mathcal {M}}}(m)\) (\(=\) \(\mathrm {Ext}_{\mathcal {M}}(\alpha )(m))\) such that \( f(m_{0})\ge \beta \) holds in \({\mathcal {M}}\). This contradicts \(\mathcal {M}{(\alpha )}\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}\) since f is an \( \mathbb {L}_{{\mathcal {M}}}\)-definable function in \({\mathcal {M}}\), thereby showing the veracity of (3). This concludes the verification of \(\mathrm {Coll }(\mathbb {L}_{{\mathcal {M}}})\) in \({\mathcal {M}}.\) \(\square \)
Lemma 4.6
If \({\mathcal {M}}\) is a nonstandard model of \(\mathrm {ZF}(\mathbb {L}_{{\mathcal {M}}})\), and \( {\mathcal {M}}\) is W-saturated, then \({\mathcal {M}}\) is cofinally condensable.
Proof
Fix any nonstandard \(\gamma \in \mathrm {Ord}^{ {\mathcal {M}}}\) and consider the type \(p(x,\gamma )\) (where \(\gamma \) is treated as a parameter) consisting of the formula \(\left( \gamma \in x\right) \wedge \mathrm {Ord}(x)\) together with formulae of the form \(\mathrm { Ref}_{\varphi }(x)\) (as in Proposition 2.8) as \(\varphi \) ranges in \(\mathbb { L}_{{\mathcal {M}}}\). It is easy to see that p(x, y) satisfies conditions (i) and (ii) of Definition 4.1. Moreover, by Proposition 2.8 (Reflection) \( p(x,\gamma )\) also satisfies condition (iii) of Definition 4.1. Therefore by the assumption of W-saturation of \({\mathcal {M}}\), \(p(x, \gamma ) \) is realized in \({\mathcal {M}}\) by some \(\gamma ^{\prime }\), which makes it clear that \(\gamma ^{\prime }\) is above \(\gamma ,\) \(\gamma ^{\prime }\) is a nonstandard limit ordinal of \({\mathcal {M}}\), and \(\mathcal {M}(\gamma ^{\prime })\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}\). Thanks to Lemmas 4.2 and 4.3, \(\mathcal {M}(\gamma ^{\prime })\cong {\mathcal {M}}\), thus \({\mathcal {M}}\) is cofinally condensable. \(\square \)
We are now ready to establish Theorem B. The special case of Theorem B for countable \(\omega \)-nonstandard models of \(\mathrm {ZF}\) follows from Schlipf’s work on recursively saturated models of \(\mathrm {ZF}\) in [17] and [18].
Theorem B. The following are equivalent for a countable model \({\mathcal {M}}\) of \(\mathrm {ZF}\).
-
(a)
\({\mathcal {M}}\) is condensable.
-
(b)
\({\mathcal {M}}\) is cofinally condensable.
-
(c)
\({\mathcal {M}}\) is nonstandard, and \(\mathcal {M}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}\) for an unbounded collection of \(\alpha \in \mathrm {Ord}^{{\mathcal {M}}}\).
-
(d)
\({\mathcal {M}}\) is nonstandard and W- saturated, and \({\mathcal {M}}\models \mathrm {ZF}(\mathbb {L}_{{\mathcal {M}}}).\)
-
(e)
For some nonstandard ordinal \(\gamma \) of \({\mathcal {M}}\) and some \(S\subseteq M\), S is an amenableFootnote 4\(\gamma \)- satisfaction class on \({\mathcal {M}}.\)
Proof
We will first show the equivalence of (a), (b) , and (c) by establishing \((b)\Rightarrow (a)\Rightarrow (c)\Rightarrow (b) \). This will allow us to show the equivalence of (d) with each of (a) , (b), and (c) by proving \((a)\Rightarrow (d)\Rightarrow (a)\). Finally, we demonstrate \((a)\Rightarrow (e)\Rightarrow (d)\) to complete the proof. \(\square \)
\(\mathbf {(b)\Rightarrow (a)}.\) Trivial.
\(\mathbf {(a)\Rightarrow (c)}.\) Suppose \({\mathcal {M}}\) is condensable with \({\mathcal {M}}\cong {\mathcal {M}}(\alpha )\prec _{\mathbb {L}_{ {\mathcal {M}}}}{\mathcal {M}}\). Then by “unwinding” the isomorphism between \({\mathcal {M}}\) and \( {\mathcal {M}}(\alpha )\), we can readily obtain a sequence of models \( \left\langle \mathcal {N}_{n}:n\in \omega \right\rangle \) such that \(\mathcal { N}_{0}={\mathcal {M}}\) and for all \(n\in \omega \) the following hold:
-
(1)
\(\mathcal {N}_{n}=(\mathrm {V}(\alpha _{n}),\in )^{\mathcal {N} _{n+1}}\) for some \(\alpha _{n}\in \mathrm {Ord}(\mathcal {N}_{n+1}).\)
-
(2)
\(\mathcal {N}_{n}\prec _{\mathbb {L}}\mathcal {N}_{n+1}\), where \( \mathbb {L}:=\mathbb {L}_{{\mathcal {M}}}\).
-
(3)
\(\mathcal {N}_{n}\cong {\mathcal {M}}\).
Let \(\mathcal {N}:=\bigcup \nolimits _{n\in \omega }\mathcal {N}_{n}\). By Proposition 2.7 (Elementary Chains), \(\mathcal {N}_{n}\prec _{\mathbb {L}} \mathcal {N}\) for all \(n\in \omega ,\) which together with Lemma 4.4 implies that \(\mathcal {N}\) is W-saturated, where \(W=\mathrm {WF}(\mathcal {N})= \mathrm {WF}(\mathcal {N}_{n})\) for all \(n\in \omega .\) By Lemma 4.2, \( {\mathcal {M}}\) is also W-saturated. Therefore \(\mathcal {N}\cong {\mathcal {M}}\) by Lemma 4.3, which in light of (2) and (3) and the unboundedness of \( \{\alpha _{n}:n\in \omega \}\) in \(\mathrm {Ord}^{\mathcal {N}}\) makes it clear that (c) holds.
\(\mathbf {(c)\Rightarrow (b)}.\) Assume (c). It is easy to see, using Proposition 2.6 and Lemma 4.2, that \({\mathcal {M}}\) is W-saturated. By (c) we can choose a nonstandard \(\gamma \in \mathrm {Ord}^{\mathcal { M}}\) arbitrarily high in Ord\(^{{\mathcal {M}}}\) such that \({\mathcal {M}} _{\gamma }\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}\). Since by Lemma 4.2 \( {\mathcal {M}}_{\gamma }\) is W-saturated, we can now invoke Lemma 4.3 to conclude that \(\mathcal {M\cong M}_{\gamma }\prec _{\mathbb {L}_{{\mathcal {M}}}} {\mathcal {M}}\), which makes it evident that (b) holds.
\(\mathbf {(a)\Rightarrow (d)}.\) If \(\mathcal {M}\cong \mathcal {M}{(\alpha )} \prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}\) for some \(\alpha \in \mathrm { Ord}({\mathcal {M}})\), then \({\mathcal {M}}\) is clearly nonstandard. Moreover, \( {\mathcal {M}}\) is W-saturated by Lemma 4.2; and \({\mathcal {M}}\) satisfies \( \mathrm {ZF}(\mathbb {L}_{{\mathcal {M}}})\) by Lemma 4.5.
\(\mathbf {(d)\Rightarrow (a)}.\) This is justified by Lemma 4.6.
\(\mathbf {(a)\Rightarrow (e)}.\) Suppose (a) holds and let \(\alpha \in \mathrm {Ord}({\mathcal {M}})\) such that \(\mathcal {M}\cong \mathcal {M}{(\alpha )}\prec _{ \mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}\). By Proposition 2.5 for each \(\delta \in \mathrm {o}({\mathcal {M}}),\) there is some \(S\in M\) such that S is a \( \delta \)-satisfaction predicate over \(\mathcal {M}(\alpha )\) that is definable in \(\mathcal {M}(\alpha )\) by an \(\mathbb {L}_{\mathcal {M}(\alpha )}\) -formula. Since we have verified that \((a)\Rightarrow (d)\), \(\mathcal { M}{(\alpha )}\) satisfies \(\mathrm {ZF}(\mathbb {L}_{{\mathcal {M}}})\), which assures us that S is an amenable \(\delta \)-satisfaction predicate over \( \mathcal {M}(\alpha )\). Proposition 2.6 (Overspill) can be readily invoked (applied to \({\mathcal {M}}\), rather than \(({\mathcal {M}},S)\)) to show there is some nonstandard \(\gamma \) in \({\mathcal {M}}\) such that \({\mathcal {M}}\) satisfies “there is an amenable \(\gamma \)-satisfaction class over \((\mathrm {V}(\alpha ),\in )\)” . In light of the assumption that \({\mathcal {M}}\cong {\mathcal {M}}(\alpha )\), this shows that (e) holds.
To carry out the overspill argument, we will distinguish between the case when \({\mathcal {M}}\) is \(\omega \)-standard, and the case when \({\mathcal {M}}\) is \(\omega \)-nonstandard. If \({\mathcal {M}}\) is \(\omega \)-standard, the overspill argument succeeds smoothly since by routine absoluteness considerations, for \(s\in M\) and \(S:=\mathrm {Ext}_{{\mathcal {M}}}(s)\), we have:
S is amenable over \({\mathcal {M}}(\alpha )\) iff \({\mathcal {M}}\models \) “s is amenable over \(\left( \mathrm {V}(\alpha ),\in \right) \)” .
However, since the left-to-right direction of the above equivalence can break down for \(\omega \)-nonstandard models (e.g., for models of \({\mathcal {M}}\) of ZF that satisfy \(\lnot \mathrm {Con(ZF)})\) we will spell out the overspill argument for the case that \({\mathcal {M}}\) is \(\omega \) -nonstandard in more detail. It is worth pointing out that in this case (a) implies that \({\mathcal {M}}\) is recursively saturated, and by the resplendence property of countable recursively saturated models one can readily conclude that \({\mathcal {M}}\) carries an amenable j-satisfaction class for some nonstandard \(j\in \omega ^{{\mathcal {M}}}.\) However, the overspill argument we present establishes (e) without the assumption of countability of \({\mathcal {M}}\). Within \({\mathcal {M}}\), for each \(i\in \omega ^{ {\mathcal {M}}}\) let \(\mathrm {Repl}_{i}\mathrm {(S)}\) consist of all instances of the replacement scheme in the language {\(\in ,\mathrm {S}\)} whose length is at most i. Then define a subset S of \(\mathrm {V}(\alpha ) \) to be i-amenable over \(\left( \mathrm {V}(\alpha ),\in \right) \) if \(\left( \mathrm {V}(\alpha ),\in ,S\right) \models \mathrm {Repl}_{i} \mathrm {(S)}\). Since \(\mathcal {M}(\alpha )\) is a model of ZF and for each “real world” natural number n, there is an n-satisfaction class over \(\mathcal {M}(\alpha )\) that is first order definable in \({\mathcal {M}}\), we may conclude:
(1) For each \(n\in \omega \) \({\mathcal {M}}\models \) “\(\exists s\) (s is n-amenable over \(\left( \mathrm {V} (\alpha ),\in \right) )\)” .
Therefore by Overspill, there is some nonstandard \(j\in \omega ^{ {\mathcal {M}}}\) such that:
(2) \({\mathcal {M}}\models \) “\(\exists s\) (s is j -amenable over \(\left( \mathrm {V}(\alpha ),\in \right) )\)” .
Let \(s\in M\) be a witness to the existential statement in (2) and \( S:=\mathrm {Ext}_{{\mathcal {M}}}(s)\). It is evident that S is an amenable j -satisfaction class over \({\mathcal {M}}(\alpha )\), as desired.
\(\mathbf {(e)\Rightarrow (d)}.\) The W-saturation of \({\mathcal {M}}\) is readily verifiable with a reasoning very similar to the proof of Lemma 4.2. To see that \({\mathcal {M}}\models \mathrm {ZF}(\mathbb {L}_{{\mathcal {M}}}),\) it is sufficient to verify that the replacement scheme holds in \({\mathcal {M}}\) for all \(\mathbb {L}_{{\mathcal {M}}}\)-formulae. To this end, let \(\varphi (x,y)\) be an \(\mathbb {L}_{{\mathcal {M}}}\)-formula (possibly with parameters from \({\mathcal {M}}\)), and suppose that \({\mathcal {M}}\models \forall x\exists !y\varphi (x,y).\) Let \(f:M\rightarrow M\) be the function whose graph is described by \(\varphi .\) Given \(c\in M,\) we want to show that there is \(d\in M\) such that
$$\begin{aligned} \mathrm {Ext}_{{\mathcal {M}}}(d)=\{f(m):m\in \mathrm {Ext}_{{\mathcal {M}}}(c)\}. \end{aligned}$$
By Proposition 2.3 the graph of f is also given by the formula \( \theta (x,y,\varphi ):=\mathrm {S}(\varphi (c_{x},c_{y}))\) (where \(\varphi \) is treated as a parameter). The assumption that \(({\mathcal {M}},S)\models \mathrm {Repl(S)}\) then allows us to get hold of \(d\in M\) such that \(\mathrm { Ext}_{{\mathcal {M}}}(d)=\{f(m):m\in \mathrm {Ext}_{{\mathcal {M}}}(c)\}.\)
Remark 4.7
An examination of the proof of Theorem B makes it clear that the following implications hold without the assumption of countability of \({\mathcal {M}}\):
$$\begin{aligned} (b)\Rightarrow (a)\Rightarrow (e)\Rightarrow (c)\Leftrightarrow (d). \end{aligned}$$
We suspect that the implication \((a)\Rightarrow (b)\) fails for some uncountable model of ZF, but we have not been able to verify this. However, the remaining two implications can be shown to be irreversible by resorting to well-known uncountable models, as we shall explain.
The failure of \((e)\Rightarrow (a)\) is illustrated by the easily verified fact that there are \(\omega _{1}\)-like recursively saturated models of ZF: start with a countable recursively saturated model \({\mathcal {M}}_{0}\) of ZF and let \(S_{0}\) be an amenable j-satisfaction class \(S_{0}\) for some nonstandard \(j\in \omega ^{{\mathcal {M}}}\). Then use the Keisler-Morley TheoremFootnote 5 to build an \(\omega _{1}\)-like elementary end extension \(({\mathcal {M}} ,S) \) of \(({\mathcal {M}}_{0},S_{0})\). It is evident that \({\mathcal {M}}\) is recursively saturated but not condensable.
The failure of \((c)\Rightarrow (e)\) is illustrated by the fact that there are \(\omega _{1}\)-like rather classless recursively saturated models of ZF; this fact was first established by Matt Kaufmann [13] using the combinatorial principle \(\Diamond _{\omega _{1}}\); later Shelah [19] used an absoluteness argument to eliminate \( \Diamond _{\omega _{1}}\) (but no “direct proof” of this fact has been yet discovered). Note that by Tarski’s theorem on undefinability of truth, a rather classless model cannot even carry a separative \(\gamma \)-satisfaction class for nonstandard \(\gamma \).Footnote 6
It is also worth pointing out that the equivalence of condition (a) through (d) of Theorem B holds for models of ZF of arbitrary cardinality provided “condensable” is replaced by “weakly condensable” , where \({\mathcal {M}}\) is said to be weakly condensable if \(\mathcal {M}\ {\cong }_{p}\ \mathcal {M}{(\alpha )}\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}\) for some \(\alpha \in \mathrm {Ord}({\mathcal {M}})\); here \(\mathcal {\cong }_{p}\) denotes partial isomorphism (two relational structures are said to be partially isomorphic if there is a nonempty family of partial isomorphisms between them that has the back-and-forth property, see [1]).
Remark 4.8
Condensability is a robust notion, as indicated by (1) and (2) below.
(1) It is easy to see, using the definition of condensability, that condensability is inherited by inner models (by an inner model of a model \({\mathcal {M}}\) of ZF here we mean a transitive subclass of \({\mathcal {M}}\) that satisfies ZF, contains all the ordinals of \({\mathcal {M}}\), and is definable in \({\mathcal {M}}\) by an \(\mathbb {L}_{{\mathcal {M}}}\)-formula).
(2) The equivalence of (a) and (c) of Theorem B can be used to show that if \({\mathcal {M}}\) is a condensable model of \(\mathrm {ZF}\), and \( \mathbb {P}\) is set-notion of forcing in \({\mathcal {M}}\), then for every \(\mathbb {P}\)-generic filter G over \({\mathcal {M}}\), \({\mathcal {M}}[G]\) is also condensable (the proof is similar to the special case when \(\mathcal { M}\) is recursively saturated, as in the proof of Theorem 2.6 of [5]). The situation is quite different for class notions of forcing, since as shown in Theorem 2.8 of [6] every countable model of ZF has a class-generic extension to a Paris model of ZF, and of course no Paris model is condensable.