Skip to main content
Log in

R-analytic functions

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We introduce the notion of R-analytic functions. These are definable in an o-minimal expansion of a real closed field R and are locally the restriction of a K-differentiable function (defined by Peterzil and Starchenko) where \(K=R[\sqrt{-1}]\) is the algebraic closure of R. The class of these functions in this general setting exhibits the nice properties of real analytic functions. We also define strongly R-analytic functions. These are globally the restriction of a K-differentiable function. We show that in arbitrary models of important o-minimal theories strongly R-analytic functions abound and that the concept of analytic cell decomposition can be transferred to non-standard models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bianconi, R.: Nondefinability results of the field of real numbers by the exponential function and by the restricted sine function. J. Symb. Logic 62(4), 1173–1178 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bianconi, R.: Undefinability results in o-minimal expansions of the real numbers. Ann. Pure Appl. Logic 134, 43–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 36. Springer, Berlin (1998)

    Google Scholar 

  4. Denef, J., Lipshitz, L.: Ultraproducts and approximation in local rings. II. Math. Ann. 253(1), 1–28 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gunning, R., Rossi, H.: Analytic functions of several complex variables. Reprint of the 1965 original. AMS Chelsea Publishing, Providence (2009)

  6. Huber, R., Knebusch, M.: A glimpse at isoalgebraic spaces. Note Mat. 10(suppl. 2), 315–336 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Kaiser, T.: Global complexification of real analytic globally subanalytic functions. Isr. J. Math. (2016). doi:10.1007/s11856-016-1306-9

  8. Knebusch, M.: Isoalgebraic geometry: first steps. Seminar on Number Theory, Paris 1980–81 (Paris, 1980/1981), pp. 127–141, Progr. Math., 22, Birkhäuser, Boston, Mass (1982)

  9. Knebusch, M., Scheiderer, C.: Einführung in die reelle Algebra. Vieweg, Wiesbaden (1989)

    Book  MATH  Google Scholar 

  10. Krantz, S., Parks, H.: A Primer of Real Analytic Functions. Birkhäuser Advanced Texts, Birkhäuser (2002)

    Book  MATH  Google Scholar 

  11. Miller, D.: A preparation theorem for Weierstrass systems. Trans. Am. Math. Soc. 358(10), 4395–4439 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Peterzil, Y., Starchenko, S.: Expansions of algebraically closed fields in o-minimal structures. Sel. Math. New Ser. 7, 409–445 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Peterzil, Y., Starchenko, S.: Expansions of algebraically closed fields II: functions of several variables. J. Math. Logic 3(1), 1–35 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pillay, A., Steinhorn, C.: Definable sets in ordered structures. I. Trans. Am. Math. Soc. 295(2), 565–592 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ruiz, J.: The Basic Theory of Power Series. Advanced Lectures in Mathematics. Vieweg, Wiesbaden (1993)

    Book  Google Scholar 

  16. Shiota, M.: Nash Manifolds. Lecture Notes in Mathematics, vol. 1269. Springer, Berlin (1987)

    Google Scholar 

  17. van den Dries, L., Macintyre, A., Marker, D.: The elementary theory of restricted analytic fields with exponentiation. Ann. Math. 140, 183–205 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. van den Dries, L.: Tame Topology and O-minimal Structures. London Mathematics Society Lecture Notes Series, vol. 248. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  19. van den Dries, L., Miller, C.: Extending Tamm’s theorem. Ann. Inst. Fourier 44(5), 1367–1395 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J. 84(2), 497–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Kaiser.

Additional information

The author was supported in part by DFG KA 3297/1-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaiser, T. R-analytic functions. Arch. Math. Logic 55, 605–623 (2016). https://doi.org/10.1007/s00153-016-0483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-016-0483-x

Keywords

Mathematics Subject Classification

Navigation