Skip to main content
Log in

On the Univalence of Poly-analytic Functions

  • Published:
Computational Methods and Function Theory Aims and scope Submit manuscript

Abstract

A continuous complex-valued function F in a domain \(D\subseteq \mathbf {C}\) is poly-analytic of order \(\alpha \) if it satisfies \(\partial ^{\alpha }F/\partial \overline{z}^{\alpha }=0\). One can show that F has the form \(F(z)=\sum _{k=0}^{\alpha -1}\overline{z}^{k}A_{k}(z)\), where each \(A_k\) is an analytic function. In this paper, we prove the existence of a Landau constant for poly-analytic functions and the special bi-analytic case. We also establish Bohr’s inequality for poly-analytic and bi-analytic functions. In addition, we give an estimate for the arc-length over the class of poly-analytic mappings and consider the problem of minimizing moments of order p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agranovsky, M.L.: Characterization of polyanalytic functions by meromorphic extensions into chains of circles. J. Anal. Math. 113, 305–329 (2011)

  2. Abdulhadi, Z., Abu-Muhanna, Y.: Landau’s theorem for biharmonic mappings. J. Math. Anal. Appl. 338(1), 705–709 (2008)

  3. Ali, R.M., Abu-Muhanna, Y., Ponnusamy, S.: On the Bohr inequality. In: Govil, N.K., et al. (eds.) Progress in Approximation Theory and Applicable Complex Analysis, vol. 117, pp. 265–295. Springer Optimization and Its Applications, New York (2016)

  4. Ali, R.M., Barnard, R.W., Solynin, AY.: A note on the Bohr’s phenomenon for power series. J. Math. Anal. Appl. 449(1), 154–167 (2017)

  5. Amozova, K.F., Ganenkova, E.G., Ponnusamy, S.: Criteria of univalence and fully \(\alpha \)-accessibility for \(p\)-harmonic and \(p\)-analytic functions. Complex Var. Elliptic Equations 62(8), 1165–1183 (2017)

    Article  MathSciNet  Google Scholar 

  6. Alkhaleefah, S.A., Kayumov, I.R., Ponnusamy, S.: On the Bohr inequality with a fixed zero coefficient. Proc. Am. Math. Soc. 147(12), 5263–5274 (2019)

    Article  MathSciNet  Google Scholar 

  7. Abu-muhanna, Y., Shakaa, L.: Bohr’s inequality for large functions (2020). arXiv:2010.07090

  8. Balk, M.B.: Polyanalytic Functions and their Generalizations, Complex Analysis I Encyclopedia Math. Sci., vol. 85, pp. 195–253. Springer, Berlin (1997)

  9. Bai, X.-X., Liu, M.S.: Landau-type theorems of poly-harmonic mappings and log-p-harmonic mappings. Complex Anal. Oper. Theory 13(2), 321–340 (2019)

    Article  MathSciNet  Google Scholar 

  10. Bohr, H.: A theorem concerning power series. Proc. Lond. Math. Soc. 13(2), 1–5 (1914)

    Article  MathSciNet  Google Scholar 

  11. Bombieri, E.: Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze. Bull Unione Mat. Ital. 17, 276–282 (1962)

    MathSciNet  MATH  Google Scholar 

  12. Chen, H., Gauthier, P., Hengartner, W.: Bloch constants for planar harmonic mappings. Proc. Am. Math. Soc. 128, 3231–3240 (2000)

    Article  MathSciNet  Google Scholar 

  13. Chen, S., Ponnusamy, S.: Landau’s theorem for solutions of the \(\overline{\partial }\)-equation in Dirichlet-type spaces. Bull. Aust. Math. Soc. 97(1), 80–87 (2018)

  14. Chen, H., Liu, M.S.: The Landau-Block type theorems for planar harmonic mappings with bounded dilation. J. Math. Anal. Appl. 468, 1066–1081 (2018)

    Article  MathSciNet  Google Scholar 

  15. Chen, S.F., Liu, M.S.: Landau-type theorems and bi-Lipschitz theorems for bounded biharmonic mappings. Monatsh. Math. 193, 783–806 (2020)

    Article  MathSciNet  Google Scholar 

  16. Chen, S., Matelevic, M., Ponnusamy, S., Wang, X.: Lipschitz type spaces and Landau-Bloch type theorems for harmonic functions and solutions to Poisson equations. Acta. Math. Sinica Chin. Ser. 60, 1–12 (2017)

    Google Scholar 

  17. Chen, S., Ponnusamy, S., Wang, X.: Landau’s theorem for certain biharmonic mappings. Appl. Math. Comput. 208, 427–433 (2009)

  18. Chen, S., Ponnusamy, S., Wang, X.: Coefficient estimates and Landau-Bloch’s theorem for planar harmonic mappings. Bull. Malays. Math. Sci. Soc. 34(2), 255–265 (2011)

  19. Chen, S., Ponnusamy, S., Wang, X.: Weighted Lipschitz continuity, Schwarz-Pick’s Lemma and Landau-Bloch’s theorem for hyperbolic-harmonic mappings in \({\mathbb{C}}^n\). Math. Model. Anal. 18(1), 66–79 (2013)

  20. Chen, J., Rasila, A., Wang, X.: Landau’s theorem for polyharmonic mappings. J. Math. Anal. Appl. 409, 934–945 (2014)

  21. Djakov, P.B., Ramanujan, M.S.: A remark on Bohr’s theorems and its generalizations. J. Anal. 8, 65–77 (2000)

  22. Fej, W., Min, H.X., Liu, H.: The properties of bianalytic functions with zero Arc at a pole. J. Math. Res. Exp. 29(4), 623–628 (2009)

    MathSciNet  Google Scholar 

  23. Grigoryan, A.: Landau and Bloch theorems for harmonic mappings. Complex Var. Elliptic Equations 51(1), 81–87 (2006)

    Article  MathSciNet  Google Scholar 

  24. Huang, X.Z.: Sharp estimate on univalent radius for planar harmonic mappings with bounded Fréchet derivative. Sci. Sin. Math. 44(6), 685–692 (2014) (in Chinese)

  25. Kolossov, G.V.: Sur les problémes d’élasticité á deux dimensions. C. R. Acad. Sci. 146, 522–525 (1908)

  26. Kalaj, D., Ponnusamy, S., Vuorinen, M.: Radius of close-to-convexity and full starlikeness of harmonic mappings. Complex Var. Elliptic Equations 44(6), 685–692 (2014)

    MATH  Google Scholar 

  27. Kayumov, I.R., Ponnusamy, S.: Bohr inequality for odd analytic functions. Comput. Methods Funct. Theory 17(4), 679–688 (2017)

    Article  MathSciNet  Google Scholar 

  28. Kayumov, I.R., Ponnusamy, S.: Bohr’s inequality for analytic functions with lacunary series and harmonic functions. J. Math. Anal. Appl. 465(2), 857–871 (2018)

  29. Kayumov, I.R., Ponnusamy, S.: On a powered Bohr inequality. Ann. Acad. Sci. Fenn. Ser. A I Math. 44, 301–310 (2019)

    Article  MathSciNet  Google Scholar 

  30. Kayumov, I.R., Ponnusamy, S., Shakirov, N.: Bohr radius for locally univalent harmonic mappings. Math. Nachr. 291(11–12), 1757–1768 (2018)

    Article  MathSciNet  Google Scholar 

  31. Liu, M.S.: Estimates on Bloch constants for planar harmonic mappings. Sci. China Ser. A Math. 52, 87–93 (2009)

    Article  MathSciNet  Google Scholar 

  32. Liu, M.S.: Landau’s theorems for planar harmonic mappings. Comput. Math. Appl. 57(7), 1142–1146 (2009)

  33. Liu, M.S., Luo, L.-F., Luo, X.: Landau-Bloch type theorems for strongly bounded harmonic mappings. Monatsh. Math. 191(1), 175–185 (2020)

    Article  MathSciNet  Google Scholar 

  34. Li, P., Ponnusamy, S., Wang, X.: some properties of planar p-harmonic and log-p-harmonic mappings. Bull. Malays. Math. Sci. Soc. 36(3), 595–609 (2013)

  35. Muskhelishvili, N.I.: Some Basic Problems of Mathematical Elasticity Theory. Fundamental Equations Plane Theory of Elasticity Torsion and Bending (1968). Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3034-1 (in Russian)

  36. Paulsen, V.I., Popascu, G., Singh, D.: On Bohr’s inequality. Proc. Lond. Math. Soc. 3(85), 493–512 (2002)

  37. Sull, E.: integrazione dellequazione differenziale \(\varDelta ^{2n}u=0\). Ann. Mat. Pura Appl. Suppl. 3(2), 1–51 (1989)

    Google Scholar 

  38. Shenzhou, Z., Xueliang, Z.: Bianalytic functions, biharmonic functions and elastic problems in the plane. Appl. Math. Mech. 21(8), 885–892 (2000)

    Article  MathSciNet  Google Scholar 

  39. Sidon, S.: Uber einen Satz von Herrn Bohr. Math. Z. 26, 731–732 (1927)

    Article  MathSciNet  Google Scholar 

  40. Tomic, M.: Sur un théoréme de H. Bohr. Math. Scand. 11, 103–106 (1962)

  41. Zhao, Z.: Bianalytic functions Complex harmonic functions and boundary value problems. J. Beijing Normal Univ. 31(2), 175–179 (1995). (in Chinese)

    MathSciNet  MATH  Google Scholar 

  42. Zhu, J.F.: Landau theorem for planar harmonic mappings. Complex Anal. Oper. Theory 9, 1819–1826 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Layan El Hajj.

Additional information

Communicated by Pekka Koskela.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulhadi, Z., Hajj, L.E. On the Univalence of Poly-analytic Functions. Comput. Methods Funct. Theory 22, 169–181 (2022). https://doi.org/10.1007/s40315-021-00378-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40315-021-00378-5

Keywords

Mathematics Subject Classification

Navigation