Skip to main content
Log in

Lifschitz realizability for intuitionistic Zermelo–Fraenkel set theory

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

A variant of realizability for Heyting arithmetic which validates Church’s thesis with uniqueness condition, but not the general form of Church’s thesis, was introduced by Lifschitz (Proc Am Math Soc 73:101–106, 1979). A Lifschitz counterpart to Kleene’s realizability for functions (in Baire space) was developed by van Oosten (J Symb Log 55:805–821, 1990). In that paper he also extended Lifschitz’ realizability to second order arithmetic. The objective here is to extend it to full intuitionistic Zermelo–Fraenkel set theory, IZF. The machinery would also work for extensions of IZF with large set axioms. In addition to separating Church’s thesis with uniqueness condition from its general form in intuitionistic set theory, we also obtain several interesting corollaries. The interpretation repudiates a weak form of countable choice, AC ω,ω , asserting that a countable family of inhabited sets of natural numbers has a choice function. AC ω,ω is validated by ordinary Kleene realizability and is of course provable in ZF. On the other hand, a pivotal consequence of AC ω,ω , namely that the sets of Cauchy reals and Dedekind reals are isomorphic, remains valid in this interpretation. Another interesting aspect of this realizability is that it validates the lesser limited principle of omniscience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczel P.: The type theoretic interpretation of constructive set theory. In: MacIntyre, A., Pacholski, L., Paris, J. (eds.) Logic Colloquium ’77, pp. 55–66. North Holland, Amsterdam (1978)

    Chapter  Google Scholar 

  2. Aczel, P., Rathjen, M.: Notes on constructive set theory. Technical Report 40, Institut Mittag-Leffler, The Royal Swedish Academy of Sciences (2001). http://www.ml.kva.se/preprints/archive2000-2001.php

  3. Beeson M.: Continuity in intuitionistic set theories. In: Boffa, M., Dalen, D., McAloon, K. (eds.) Logic Colloquium ’78, North-Holland, Amsterdam (1979)

    Google Scholar 

  4. Akama, Y., Berardi, S., Hayashi, S., Kohlenbach, U.: An arithmetical hierarchy of the law of excluded middle and related principles. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS’04), pp. 192–201. IEEE Press (2004)

  5. Beeson M.: Foundations of Constructive Mathematics. Springer, Berlin (1980)

    Google Scholar 

  6. Blass A.: Injectivity, projectivity, and the axiom of choice. Trans. AMS 255, 31–59 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, R.-M.: Independence and conservativity results for intuitionistic set theory. Ph.D. Thesis, University of Leeds (2010)

  8. Dragalin A.G.: Mathematical Intuitionism-Introduction to Proof Theory. American Mathematical Society, Providence, RI (1988)

    MATH  Google Scholar 

  9. Friedman H.: Some applications of Kleene’s method for intuitionistic systems. In: Mathias, A., Rogers, H. (eds.) Cambridge Summer School in Mathematical Logic volume 337 of Lectures Notes in Mathematics, pp. 113–170. Springer, Berlin (1973)

    Chapter  Google Scholar 

  10. Friedman H.: Set theoretic foundations for constructive analysis. Ann. Math. 105, 1–28 (1977)

    Article  MATH  Google Scholar 

  11. Ishihara H.: An omniscience principle, the König lemma and the Hahn-Banch theorem. Zeitschrift für mathematische Logik und grundlagen der Mathematik 36, 237–240 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kleene S.C.: On the interpretation of intuitionistic number theory. J. Symb. Log. 10, 109–124 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kleene S.C., Vesley R.E.: The Foundations of Intuitionistic Mathematics. North-Holland, Amsterdam (1965)

    MATH  Google Scholar 

  14. Kreisel G., Troelstra A.S.: Formal systems for some branches of intuitionistic analysis. Ann. Math. Log. 1, 229–387 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lifschitz V.: CT0 is stronger than CT0!. Proc. Am. Math. Soc. 73, 101–106 (1979)

    MathSciNet  Google Scholar 

  16. McCarty, D.C.: Realizability and recursive mathematics. PhD thesis, Oxford University (1984)

  17. McCarty D.C.: Realizability and recursive set theory. Ann. Pure Appl. Log. 32, 153–183 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Myhill J.: Some properties of Intuitionistic Zermelo–Fraenkel set theory. In: Mathias, A., Rogers, H. (eds.) Cambridge Summer School in Mathematical Logic, volume 337 of Lectures Notes in Mathematics, pp. 206–231. Springer, Berlin (1973)

    Chapter  Google Scholar 

  19. Rathjen M.: The higher infinite in proof theory. In: Makowsky, J.A., Ravve, E.V. (eds.) Logic Colloquium ’95 Lecture Notes in Logic, vol. 11, pp. 275–304. Springer, New York (1998)

    Google Scholar 

  20. Rathjen M.: Realizability for constructive Zermelo–Fraenkel set theory. In: Väänänen, J., Stoltenberg-Hansen, V. (eds.) Logic Colloquium ’03. Lecture Notes in Logic, vol. 24, pp. 282–314. A.K. Peters, Wellesley, Massachusetts (2006)

    Google Scholar 

  21. Rathjen M.: The disjunction and other properties for constructive Zermelo–Fraenkel set theory. J. Symb. Log. 70, 1233–1254 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rathjen M.: Metamathematical properties of intuitionistic set theories with choice principles. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) New Computational Paradigms: Changing Conceptions of What is Computable, pp. 287–312. Springer, New York (2008)

    Google Scholar 

  23. Troelstra A.S., van Dalen D.: Constructivism in Mathematics, vols. I, II. North Holland, Amsterdam (1988)

    Google Scholar 

  24. van Oosten J.: Lifschitz’s realizability. J. Symb. Log. 55, 805–821 (1990)

    Article  MATH  Google Scholar 

  25. van Oosten, J.: Exercises in realizability. PhD thesis, University of Amsterdam (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Rathjen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, RM., Rathjen, M. Lifschitz realizability for intuitionistic Zermelo–Fraenkel set theory. Arch. Math. Logic 51, 789–818 (2012). https://doi.org/10.1007/s00153-012-0299-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-012-0299-2

Keywords

Mathematics Subject Classification

Navigation