Skip to main content
Log in

On the form of witness terms

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We investigate the development of terms during cut-elimination in first-order logic and Peano arithmetic for proofs of existential formulas. The form of witness terms in cut-free proofs is characterized in terms of structured combinations of basic substitutions. Based on this result, a regular tree grammar computing witness terms is given and a class of proofs is shown to have only elementary cut-elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaz, M., Stefan, H.: On the non-confluence of cut-elimination. to appear

  2. Baaz, M., Stefan, H., Leitsch, A., Richter, C., Spohr, H.: Cut-elimination: experiments with CERES. In: Baader, F. Voronkov, A. (eds.) Logic for programming, artificial intelligence, and reasoning (LPAR) 2004. Lecture Notes in Computer Science, vol. 3452, pp. 481–495. Springer (2005)

  3. Baaz M., Stefan H., Leitsch A., Richter C., Spohr H.: CERES: An analysis of Fürstenberg’s proof of the infinity of primes. Theor. Comput. Sci. 403(2–3), 160–175 (2008)

    Article  MATH  Google Scholar 

  4. Baaz M., Leitsch A.: On skolemization and proof Complexity. Fundamenta Informaticae 20(4), 353–379 (1994)

    MATH  MathSciNet  Google Scholar 

  5. Baaz M., Leitsch A.: Cut-elimination and redundancy-elimination by resolution. J. Symb. Comput. 29(2), 149–176 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Buss S: An introduction to proof theory. In: Buss, S (eds) Handbook of proof theory pages, pp. 2–78. Elsevier, Amsterdam (1998)

    Google Scholar 

  7. Carbone A: Turning cycles into spirals. Ann. Pure Appl. Log. 96, 57–73 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carbone A.: Cycling in proofs and feasibility. Trans. Am. Math. Soc. 352, 2049–2075 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree automata: techniques and applications. Available on: http://www.grappa.univ-lille3.fr/tata2007. release October 12th 2007

  10. Curien, P.-L., Herbelin, H.: The duality of computation. In: Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP ’00), pp. 233–243. ACM (2000)

  11. Danos V., Joinet J.-B., Schellinx H.: A new deconstructive logic: linear logic. J. Symb. Log. 62(3), 755–807 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Edwards H.M.: Fermat’s Last Theorem: A Genetic Introduction to Algebraic Number Theory. Springer, Berlin (1977)

    MATH  Google Scholar 

  13. Gallier J.: Constructive logics. Part I: a tutorial on proof systems and typed λ-calculi. Theor. Comput. Sci. 110(2), 249–339 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gécseg F., Steinby M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds) Handbook of Formal Languages, vol 3., pp. 1–68. Springer, Berlin (1997)

    Google Scholar 

  15. Gentzen, G.: Untersuchungen über das logische Schließen. Mathematische Zeitschrift 39:176–210, 405–431, (1934–1935)

  16. Gentzen G.: Die Widerspruchsfreiheit der reinen Zahlentheorie. Mathematische Annalen 112, 493–565 (1936)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gerhardy, P.: Refined Complexity Analysis of Cut Elimination. In: Baaz, M., Makowsky, J. (eds), Computer Science Logic (CSL) 2003, vol. 2803 of Lecture Notes in Computer Science, pp. 212–225. Springer (2003)

  18. Gerhardy, P.: The role of quantifier alternations in cut elimination. Notre Dame J. Formal Log. 46(2), 165–171 (2005)

    Google Scholar 

  19. Girard J.-Y.: Proof Theory and Logical Complexity. Elsevier, Amsterdam (1987)

    MATH  Google Scholar 

  20. Kurt G.: Über eine noch nicht benützte Erweiterung des finiten Standpunktes. Dialectica 12, 280–287 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  21. Heijltjes, W.: Proof Forests with Cut-Elimination Based on Herbrand’s Theorem. In: Classical Logic and Computation (CL&C) 2008, participant’s proceedings. available at http://www.homes.doc.ic.ac.uk/svb/CLaC08/programme.html

  22. Hetzl S.: Describing proofs by short tautologies. Ann. Pure Appl. Log. 159(1–2), 129–145 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Hilbert D., Bernays P.: Grundlagen der Mathematik II. Springer, Berlin (1939)

    MATH  Google Scholar 

  24. Kohlenbach U.: Applied Proof Theory: Proof Interpretations and their Use in Mathematics. Springer, Berlin (2008)

    MATH  Google Scholar 

  25. Kreisel, G.: Finiteness theorems in arithmetic: An Application of Herbrand’s Theorem for Σ2-Formulas. In: Stern, J. (eds.), Logic Colloquium 1981, pp. 39–55. Elsevier, Amsterdam (1982)

  26. Luckhardt H.: Herbrand-Analysen zweier Beweise des Satzes von Roth: Polynomiale Anzahlschranken. J. Symb. Log. 54(1), 234–263 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. McKinley, R.: Herbrand expansion proofs and proof identity. In: Classical Logic and Computation (CL&C) 2008, participant’s proceedings. available at http://www.homes.doc.ic.ac.uk/svb/CLaC08/programme.html

  28. Miller D.: A compact representation of proofs. Studia Logica 46(4), 347–370 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  29. Orevkov V.P.: Lower bounds for increasing complexity of derivations after cut elimination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta 88, 137–161 (1979)

    MATH  MathSciNet  Google Scholar 

  30. Prawitz D.: Natural Deduction: A Proof-Theoretical Study. Almqvist and Wicksell, Stockholm (1965)

    MATH  Google Scholar 

  31. Pudlák P. : The Lengths of Proofs. In: Buss, S. (eds) Handbook of Proof Theory, pp. 547–637. Elsevier, Amsterdam (1998)

    Chapter  Google Scholar 

  32. Ratiu, D., Trifonov, T.: Exploring the computational content of the infinite pigeonhole principle. J. Log. Comput. (to appear)

  33. Schwichtenberg H.: Proof Theory: Some Applications of Cut-Elimination. In: Barwise, J. (eds) Handbook of Mathematical Logic, pp. 867–895. Elsevier, Amsterdam (1977)

    Chapter  Google Scholar 

  34. Statman R.: Lower bounds on Herbrand’s theorem. Proc. Am. Math. Soc. 75, 104–107 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  35. Tait, W.W.: Normal derivability in classical logic. In: Barwise, J. (ed.) The Syntax and Semantics of Infinitary Languages, vol. 72 of Lecture Notes in Mathematics, pp. 204–236. Springer (1968)

  36. Takeuti, G.: Proof Theory, 2nd edn. Elsevier, Amsterdam, March 1987

  37. Urban, C.: Classical Logic and Computation. PhD thesis, University of Cambridge, October 2000

  38. Urban C., Bierman G.: Strong Normalization of Cut-Elimination in Classical Logic. Fundamenta Informaticae 45, 123–155 (2000)

    MathSciNet  Google Scholar 

  39. Zhang W.: Cut elimination and automatic proof procedures. Theor. Comput. Sci. 91, 265–284 (1991)

    Article  MATH  Google Scholar 

  40. Zhang W.: Depth of proofs, depth of cut-formulas and complexity of cut formulas. Theor. Comput. Sci. 129, 193–206 (1994)

    Article  MATH  Google Scholar 

  41. Zucker J.: The correspondence between cut-elimination and normalization. Ann. Math. Log. 7, 1–112 (1974)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Hetzl.

Additional information

This work was supported by INRIA and by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hetzl, S. On the form of witness terms. Arch. Math. Logic 49, 529–554 (2010). https://doi.org/10.1007/s00153-010-0186-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-010-0186-7

Keywords

Mathematics Subject Classification (2000)

Navigation