Skip to main content

Advertisement

Log in

Invasive candidiasis in critical care: challenges and future directions

  • Narrative Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Invasive candidiasis is the most common critical care-associated fungal infection with a crude mortality of ~ 40–55%. Important factors contributing to risk of invasive candidiasis in ICU include use of broad-spectrum antimicrobials, immunosuppressive drugs, and total parenteral nutrition alongside iatrogenic interventions which breach natural barriers to infection [vascular catheters, renal replacement therapy, extracorporeal membrane oxygenation (ECMO), surgery]. This review discusses three key challenges in this field. The first is the shift in Candida epidemiology across the globe to more resistant non-albicans species, in particular, the emergence of multi-resistant Candida glabrata and Candida auris, which pose significant treatment and infection control challenges in critical care. The second challenge lies in the timely and appropriate initiation and discontinuation of antifungal therapy. Early antifungal strategies (prophylaxis, empirical and pre-emptive) using tools such as the Candida colonisation index, clinical prediction rules and fungal non-culture-based tests have been developed: we review the evidence on implementation of these tools in critical care to aid clinical decision-making around the prescribing and cessation of antifungal therapy. The third challenge is selection of the most appropriate antifungal to use in critical care patients. While guidelines exist to aid choice, this heterogenous and complex patient group require a more tailored approach, particularly in cases of acute kidney injury, liver impairment and for patients supported by extracorporeal membrane oxygenation. We highlight key research priorities to overcome these challenges in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Clancy CJ, Nguyen MH (2013) Finding the missing 50% of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis 56:1284–1292. https://doi.org/10.1093/cid/cit006

    Article  Google Scholar 

  2. Poissy J, Damonti L, Bignon A et al (2020) Risk factors for candidemia: a prospective matched case-control study. Crit Care. https://doi.org/10.1186/s13054-020-2766-1

    Article  Google Scholar 

  3. Delaloye J, Calandra T (2014) Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence 5:161–169. https://doi.org/10.4161/viru.26187

    Article  Google Scholar 

  4. Kett DH, Azoulay E, Echeverria PM, Vincent JL (2011) Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med 39:665–670. https://doi.org/10.1097/CCM.0b013e318206c1ca

    Article  Google Scholar 

  5. Paiva JA, Pereira JM, Tabah A et al (2016) Characteristics and risk factors for 28-day mortality of hospital acquired fungemias in ICUs: data from the EUROBACT study. Crit Care 20:53. https://doi.org/10.1186/s13054-016-1229-1

    Article  Google Scholar 

  6. Bassetti M, Giacobbe DR, Vena A et al (2019) Incidence and outcome of invasive candidiasis in intensive care units (ICUs) in Europe: results of the EUCANDICU project. Crit Care 23:219. https://doi.org/10.1186/s13054-019-2497-3

    Article  Google Scholar 

  7. Koehler P, Stecher M, Cornely OA et al (2019) Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin Microbiol Infect 25:1200–1212. https://doi.org/10.1016/j.cmi.2019.04.024

    Article  CAS  Google Scholar 

  8. Bassetti M, Righi E, Ansaldi F et al (2015) A multicenter multinational study of abdominal candidiasis: epidemiology, outcomes and predictors of mortality. Intensive Care Med 41:1601–1610. https://doi.org/10.1007/s00134-015-3866-2

    Article  Google Scholar 

  9. Kullberg BJ, Arendrup MC (2015) Invasive candidiasis. N Engl J Med 373:1445–1456

    Article  CAS  Google Scholar 

  10. Spellberg BJ, Filler SG, Edwards JE (2006) Current treatment strategies for disseminated Candidiasis. Clin Infect Dis 42:244–251. https://doi.org/10.1086/499057

    Article  CAS  Google Scholar 

  11. Kumar V, Cheng S-C, Johnson MD et al (2014) Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. Nat Commun 5:4675. https://doi.org/10.1038/ncomms5675

    Article  CAS  Google Scholar 

  12. Vincent J-L, Lefrant J-Y, Kotfis K et al (2018) Comparison of European ICU patients in 2012 (ICON) versus 2002 (SOAP). Intensive Care Med 44:337–344. https://doi.org/10.1007/s00134-017-5043-2

    Article  Google Scholar 

  13. Karagiannidis C, Brodie D, Strassmann S et al (2016) Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Med 42:889–896. https://doi.org/10.1007/s00134-016-4273-z

    Article  CAS  Google Scholar 

  14. Bell T, O’Grady NP (2017) Prevention of central line-associated bloodstream infections. Infect Dis Clin N Am 31:551–559

    Article  Google Scholar 

  15. Vincent JL, Sakr Y, Singer M et al (2020) Prevalence and outcomes of infection among patients in intensive care units in 2017. J Am Med Assoc 323:1478–1487. https://doi.org/10.1001/jama.2020.2717

    Article  Google Scholar 

  16. Tortorano AM, Dho G, Prigitano A et al (2012) Invasive fungal infections in the intensive care unit: a multicentre, prospective, observational study in Italy (2006–2008). Mycoses 55:73–79. https://doi.org/10.1111/j.1439-0507.2011.02044.x

    Article  Google Scholar 

  17. Montagna MT, Caggiano G, Lovero G et al (2013) Epidemiology of invasive fungal infections in the intensive care unit: results of a multicenter Italian survey (AURORA project). Infection 41:645–653

    Article  CAS  Google Scholar 

  18. Baldesi O, Bailly S, Ruckly S et al (2017) ICU-acquired candidaemia in France: epidemiology and temporal trends, 2004–2013—a study from the REA-RAISIN network. J Infect 75:59–67. https://doi.org/10.1016/j.jinf.2017.03.011

    Article  Google Scholar 

  19. Lamoth F, Lockhart SR, Berkow EL, Calandra T (2018) Changes in the epidemiological landscape of invasive candidiasis. J Antimicrob Chemother 73:i4–i13. https://doi.org/10.1093/jac/dkx444

    Article  CAS  Google Scholar 

  20. Chakrabarti A, Sood P, Rudramurthy SM et al (2015) Incidence, characteristics and outcome of ICU-acquired candidemia in India. Intensive Care Med 41:285–295. https://doi.org/10.1007/s00134-014-3603-2

    Article  Google Scholar 

  21. Nucci M, Queiroz-Telles F, Alvarado-Matute T et al (2013) Epidemiology of candidemia in Latin America: a laboratory-based survey. PLoS ONE 8:e59373. https://doi.org/10.1371/journal.pone.0059373

    Article  CAS  Google Scholar 

  22. Lockhart SR, Iqbal N, Cleveland AA et al (2012) Species identification and antifungal susceptibility testing of Candida bloodstream isolates from population-based surveillance studies in two US cities from 2008 to 2011. J Clin Microbiol 50:3435–3442. https://doi.org/10.1128/JCM.01283-12

    Article  CAS  Google Scholar 

  23. Pfaller MA, Diekema DJ, Turnidge JD et al (2019) Twenty years of the SENTRY antifungal surveillance program: results for Candida species from 1997–2016. Open forum Infect Dis 6:S79–S94. https://doi.org/10.1093/ofid/ofy358

    Article  Google Scholar 

  24. Alexander BD, Johnson MD, Pfeiffer CD et al (2013) Increasing echinocandin resistance in candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis 56:1724–1732. https://doi.org/10.1093/cid/cit136

    Article  Google Scholar 

  25. Pfaller MA, Castanheira M, Lockhart SR et al (2012) Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata. J Clin Microbiol 50:1199–1203. https://doi.org/10.1128/JCM.06112-11

    Article  CAS  Google Scholar 

  26. Vallabhaneni S, Cleveland AA, Farley MM et al (2015) Epidemiology and risk factors for echinocandin nonsusceptible Candida glabrata bloodstream infections: data from a large multisite population-based candidemia surveillance program, 2008–2014. Open Forum Infect Dis. https://doi.org/10.1093/ofid/ofv163

    Article  Google Scholar 

  27. Pham CD, Iqbal N, Bolden CB et al (2014) Role of FKS mutations in Candida glabrata: MIC values, echinocandin resistance, and multidrug resistance. Antimicrob Agents Chemother 58:4690–4696. https://doi.org/10.1128/AAC.03255-14

    Article  CAS  Google Scholar 

  28. Cortegiani A, Misseri G, Chowdhary A (2019) What’s new on emerging resistant Candida species. Intensive Care Med 45:512–515

    Article  Google Scholar 

  29. Van Schalkwyk E, Mpembe RS, Thomas J et al (2019) Epidemiologic shift in Candidemia driven by Candida auris, South Africa, 2016–2017. Emerg Infect Dis 25:1698–1707. https://doi.org/10.3201/eid2509.190040

    Article  Google Scholar 

  30. Ostrowsky B, Greenko J, Adams E et al (2020) Candida auris isolates resistant to three classes of antifungal medications—New York, 2019. MMWR Morb Mortal Wkly Rep 69:6–9. https://doi.org/10.15585/mmwr.mm6901a2

    Article  Google Scholar 

  31. Eggimann P, Pittet D (2014) Candida colonization index and subsequent infection in critically ill surgical patients: 20 years later. Intensive Care Med 40:1429–1448. https://doi.org/10.1007/s00134-014-3355-z

    Article  Google Scholar 

  32. Lortholary O, Desnos-Ollivier M, Sitbon K et al (2011) Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2441 patients. Antimicrob Agents Chemother 55:532–538. https://doi.org/10.1128/AAC.01128-10

    Article  CAS  Google Scholar 

  33. Jensen RH, Johansen HK, Søes LM et al (2016) Posttreatment antifungal resistance among colonizing Candida isolates in candidemia patients: results from a systematic multicenter study. Antimicrob Agents Chemother 60:1500–1508. https://doi.org/10.1128/AAC.01763-15

    Article  CAS  Google Scholar 

  34. Healey KR, Nagasaki Y, Zimmerman M et al (2017) The gastrointestinal tract is a major source of echinocandin drug resistance in a murine model of Candida glabrata colonization and systemic dissemination. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.01412-17

    Article  Google Scholar 

  35. Thomaz DY, De Almeida JN, Lima GME et al (2018) An azole-resistant Candida parapsilosis outbreak: clonal persistence in the intensive care unit of a Brazilian teaching hospital. Front Microbiol. https://doi.org/10.3389/fmicb.2018.02997

    Article  Google Scholar 

  36. Goemaere B, Lagrou K, Spriet I et al (2018) Clonal spread of Candida glabrata bloodstream isolates and fluconazole resistance affected by prolonged exposure: a 12-year single-center study in Belgium. Antimicrob Agents Chemother. https://doi.org/10.1128/AAC.00591-18

    Article  Google Scholar 

  37. Schelenz S, Hagen F, Rhodes JL et al (2016) First hospital outbreak of the globally emerging Candida auris in a European hospital. Antimicrob Resist Infect Control 5:35. https://doi.org/10.1186/s13756-016-0132-5

    Article  Google Scholar 

  38. Ku TSN, Walraven CJ, Lee SA (2018) Candida auris: disinfectants and implications for infection control. Front Microbiol 9:726

    Article  Google Scholar 

  39. Eyre DW, Sheppard AE, Madder H et al (2018) A Candida auris outbreak and its control in an intensive care setting. N Engl J Med 379:1322–1331. https://doi.org/10.1056/NEJMoa1714373

    Article  Google Scholar 

  40. Centers for Disease Control and Prevention (2020) Infection prevention and control for Candida auris. In: Fungal Dis. https://www.cdc.gov/fungal/candida-auris/c-auris-infection-control.html

  41. Public Health England (2017) Candida auris: laboratory investigation, management and infection prevention and control. In: Public Health Engl. https://www.gov.uk/government/publications/candida-auris-laboratory-investigation-management-and-infection-prevention-and-control

  42. Caceres DH, Forsberg K, Welsh RM et al (2019) Candida auris: a review of recommendations for detection and control in healthcare settings. J Fungi 5:111. https://doi.org/10.3390/jof5040111

    Article  Google Scholar 

  43. Kollef M, Micek S, Hampton N et al (2012) Septic shock attributed to Candida infection: importance of empiric therapy and source control. Clin Infect Dis 54:1739–1746. https://doi.org/10.1093/cid/cis305

    Article  CAS  Google Scholar 

  44. Azoulay E, Dupont H, Tabah A et al (2012) Systemic antifungal therapy in critically ill patients without invasive fungal infection*. Crit Care Med 40:813–822. https://doi.org/10.1097/CCM.0b013e318236f297

    Article  CAS  Google Scholar 

  45. Pittet D, Monod M, Suter PM et al (1994) Candida colonization and subsequent infections in critically ill surgical patients. Ann Surg 220:751–758. https://doi.org/10.1097/00000658-199412000-00008

    Article  CAS  Google Scholar 

  46. León C, Ruiz-Santana S, Saavedra P et al (2006) A bedside scoring system (“Candida score”) for early antifungal treatment in nonneutropenic critically ill patients with Candida colonization. Crit Care Med 34:730–737. https://doi.org/10.1097/01.CCM.0000202208.37364.7D

    Article  Google Scholar 

  47. Ostrosky-Zeichner L, Pappas PG, Shoham S et al (2011) Improvement of a clinical prediction rule for clinical trials on prophylaxis for invasive candidiasis in the intensive care unit. Mycoses 54:46–51. https://doi.org/10.1111/j.1439-0507.2009.01756.x

    Article  Google Scholar 

  48. Haydour Q, Hage CA, Carmona EM et al (2019) Diagnosis of fungal infections a systematic review and meta-analysis supporting American thoracic society practice guideline. Ann Am Thorac Soc 16:1179–1188

    Article  Google Scholar 

  49. Karageorgopoulos DE, Vouloumanou EK, Ntziora F et al (2011) d-Glucan assay for the diagnosis of invasive fungal infections: a meta-analysis. Clin Infect Dis 52:750–770. https://doi.org/10.1093/cid/ciq206

    Article  CAS  Google Scholar 

  50. He S, Hang JP, Zhang L et al (2015) A systematic review and meta-analysis of diagnostic accuracy of serum 1,3-β-d-glucan for invasive fungal infection: focus on cutoff levels. J Microbiol Immunol Infect 48:351–361

    Article  CAS  Google Scholar 

  51. Mikulska M, Calandra T, Sanguinetti M et al (2010) The use of mannan antigen and anti-mannan antibodies in the diagnosis of invasive candidiasis: recommendations from the Third European conference on Infections in Leukemia. Crit Care. https://doi.org/10.1186/cc9365

    Article  Google Scholar 

  52. Wei S, Wu T, Wu Y et al (2019) Diagnostic accuracy of Candida albicans germ tube antibody for invasive candidiasis: systematic review and meta-analysis. Diagn Microbiol Infect Dis 93:339–345. https://doi.org/10.1016/j.diagmicrobio.2018.10.017

    Article  CAS  Google Scholar 

  53. Chang SS, Hsieh WH, Liu TS et al (2013) Multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis—a systemic review and meta-analysis. PLoS ONE. https://doi.org/10.1371/journal.pone.0062323

    Article  Google Scholar 

  54. Avni T, Leibovici L, Paul M (2011) PCR diagnosis of invasive candidiasis: systematic review and meta-analysis. J Clin Microbiol 49:665–670. https://doi.org/10.1128/JCM.01602-10

    Article  Google Scholar 

  55. Tang DL, Chen X, Zhu CG et al (2019) Pooled analysis of T2 Candida for rapid diagnosis of candidiasis. BMC Infect Dis 19:798. https://doi.org/10.1186/s12879-019-4419-z

    Article  CAS  Google Scholar 

  56. Hanson KE, Pfeiffer CD, Lease ED et al (2012) β-d-glucan surveillance with preemptive anidulafungin for invasive candidiasis in intensive care unit patients: a randomized pilot study. PLoS ONE 7:e42282. https://doi.org/10.1371/journal.pone.0042282

    Article  CAS  Google Scholar 

  57. Ostrosky-Zeichner L, Shoham S, Vazquez J et al (2014) MSG-01: a randomized, double-blind, placebo-controlled trial of caspofungin prophylaxis followed by preemptive therapy for invasive candidiasis in high-risk adults in the critical care setting. Clin Infect Dis 58:1219–1226. https://doi.org/10.1093/cid/ciu074

    Article  CAS  Google Scholar 

  58. Knitsch W, Vincent J-L, Utzolino S et al (2015) A randomized, placebo-controlled trial of preemptive antifungal therapy for the prevention of invasive candidiasis following gastrointestinal surgery for intra-abdominal infections. Clin Infect Dis 61:1671–1678. https://doi.org/10.1093/cid/civ707

    Article  CAS  Google Scholar 

  59. Timsit JF, Azoulay E, Schwebel C et al (2016) Empirical micafungin treatment and survival without invasive fungal infection in adults with ICU-acquired sepsis, candida colonization, and multiple organ failure the empiricus randomized clinical trial. J Am Med Assoc 316:1555–1564. https://doi.org/10.1001/jama.2016.14655

    Article  CAS  Google Scholar 

  60. Nucci M, Nouér SA, Esteves P et al (2016) Discontinuation of empirical antifungal therapy in ICU patients using 1,3-β-d-glucan. J Antimicrob Chemother 71:2628–2633. https://doi.org/10.1093/jac/dkw188

    Article  CAS  Google Scholar 

  61. Rouzé A, Loridant S, Poissy J et al (2017) Biomarker-based strategy for early discontinuation of empirical antifungal treatment in critically ill patients: a randomized controlled trial. Intensive Care Med 43:1668–1677. https://doi.org/10.1007/s00134-017-4932-8

    Article  CAS  Google Scholar 

  62. Pappas PG, Lionakis MS, Arendrup MC et al (2018) Invasive candidiasis. Nat Rev Dis Prim 4:18026. https://doi.org/10.1038/nrdp.2018.26

    Article  Google Scholar 

  63. Eggimann P, Bille J, Marchetti O (2011) Diagnosis of invasive candidiasis in the ICU. Ann Intensive Care 1:37. https://doi.org/10.1186/2110-5820-1-37

    Article  Google Scholar 

  64. Garbino J, Lew DP, Romand JA et al (2002) Prevention of severe Candida infections in nonneutropenic, high-risk, critically ill patients: a randomized, double-blind, placebo-controlled trial in patients treated by selective digestive decontamination. Intensive Care Med 28:1708–1717. https://doi.org/10.1007/s00134-002-1540-y

    Article  Google Scholar 

  65. Piarroux R, Grenouillet F, Balvay P et al (2004) Assessment of preemptive treatment to prevent severe candidiasis in critically ill surgical patients. Crit Care Med 32:2443–2449. https://doi.org/10.1097/01.ccm.0000147726.62304.7f

    Article  Google Scholar 

  66. Senn L, Eggimann P, Ksontini R et al (2009) Caspofungin for prevention of intra-abdominal candidiasis in high-risk surgical patients. Intensive Care Med 35:903–908. https://doi.org/10.1007/s00134-009-1405-8

    Article  Google Scholar 

  67. Ferreira D, Grenouillet F, Blasco G et al (2015) Outcomes associated with routine systemic antifungal therapy in critically ill patients with Candida colonization. Intensive Care Med 41:1077–1088. https://doi.org/10.1007/s00134-015-3791-4

    Article  CAS  Google Scholar 

  68. Harrison D, Muskett H, Harvey S et al (2013) Development and validation of a risk model for identification of non-neutropenic, critically-ill, adult patients at high risk of invasive Candida infection. Health Technol Assess (Rockv) 17:1–30. https://doi.org/10.3310/hta17030

    Article  CAS  Google Scholar 

  69. Clancy CJ, Nguyen MH (2018) Non-culture diagnostics for invasive candidiasis: promise and unintended consequences. J Fungi 4:27

    Article  Google Scholar 

  70. Cortegiani A, Russotto V, Maggiore A et al (2016) Antifungal agents for preventing fungal infections in non-neutropenic critically ill patients. Cochrane Database Syst Rev 1:CD004920

    Google Scholar 

  71. Bailly S, Leroy O, Montravers P et al (2015) Antifungal de-escalation was not associated with adverse outcome in critically ill patients treated for invasive candidiasis: post hoc analyses of the AmarCAND2 study data. Intensive Care Med 41:1931–1940. https://doi.org/10.1007/s00134-015-4053-1

    Article  CAS  Google Scholar 

  72. Jaffal K, Poissy J, Rouze A et al (2018) De-escalation of antifungal treatment in critically ill patients with suspected invasive Candida infection: incidence, associated factors, and safety. Ann Intensive Care 8:49. https://doi.org/10.1186/s13613-018-0392-8

    Article  Google Scholar 

  73. Johnson MD, Lewis RE, Dodds Ashley ES et al (2020) Core recommendations for antifungal stewardship: a statement of the mycoses study group education and research consortium. J Infect Dis 222:S175–S198. https://doi.org/10.1093/infdis/jiaa394

    Article  Google Scholar 

  74. Martin-Loeches I, Antonelli M, Cuenca-Estrella M et al (2019) ESICM/ESCMID task force on practical management of invasive candidiasis in critically ill patients. Intensive Care Med 45:789–805. https://doi.org/10.1007/s00134-019-05599-w

    Article  Google Scholar 

  75. León C, Ruiz-Santana S, Saavedra P et al (2012) Value of β-d-glucan and Candida albicans germ tube antibody for discriminating between Candida colonization and invasive candidiasis in patients with severe abdominal conditions. Intensive Care Med 38:1315–1325. https://doi.org/10.1007/s00134-012-2616-y

    Article  CAS  Google Scholar 

  76. Giacobbe DR, Mikulska M, Tumbarello M et al (2017) Combined use of serum (1,3)-β-d-glucan and procalcitonin for the early differential diagnosis between candidaemia and bacteraemia in intensive care units. Crit Care 21:176. https://doi.org/10.1186/s13054-017-1763-5

    Article  Google Scholar 

  77. Arendrup MC, Andersen JS, Holten MK et al (2019) Diagnostic performance of T2Candida among ICU patients with risk factors for invasive candidiasis. Open forum Infect Dis 6:ofz136. https://doi.org/10.1093/ofid/ofz136

    Article  CAS  Google Scholar 

  78. Lamoth F, Clancy CJ, Tissot F et al (2020) Performance of the T2Candida panel for the diagnosis of intra-abdominal candidiasis. Open Forum Infect Dis. https://doi.org/10.1093/ofid/ofaa075

    Article  Google Scholar 

  79. Rouze A, Poissy J, Sendid B, Nseir S (2018) Biomarkers in early treatment of invasive candidiasis. Hosp Pract 46:239–242. https://doi.org/10.1080/21548331.2018.1516105

    Article  Google Scholar 

  80. Gill CM, Kenney RM, Hencken L et al (2019) T2 Candida versus beta-d-glucan to facilitate antifungal discontinuation in the intensive care unit. Diagn Microbiol Infect Dis 95:162–165. https://doi.org/10.1016/J.DIAGMICROBIO.2019.04.016

    Article  CAS  Google Scholar 

  81. Rautemaa-Richardson R, Rautemaa V, Al-Wathiqi F et al (2018) Impact of a diagnostics-driven antifungal stewardship programme in a UK tertiary referral teaching hospital. J Antimicrob Chemother 73:3488–3495. https://doi.org/10.1093/jac/dky360

    Article  CAS  Google Scholar 

  82. Kritikos A, Poissy J, Poissy J et al (2020) Impact of the beta-glucan test on management of intensive care unit patients at risk for invasive candidiasis. J Clin Microbiol. https://doi.org/10.1128/JCM.01996-19

    Article  Google Scholar 

  83. Hage CA, Carmona EM, Epelbaum O et al (2019) Microbiological laboratory testing in the diagnosis of fungal infections in pulmonary and critical care practice: an official American thoracic society clinical practice guideline. Am J Respir Crit Care Med 200:535–550

    Article  CAS  Google Scholar 

  84. Mylonakis E, Zacharioudakis IM, Clancy CJ et al (2018) Efficacy of T2 magnetic resonance assay in monitoring candidemia after initiation of antifungal therapy: the serial therapeutic and antifungal monitoring protocol (STAMP) trial. J Clin Microbiol 56:e01756–e1817. https://doi.org/10.1128/JCM.01756-17

    Article  Google Scholar 

  85. Jaijakul S, Vazquez JA, Swanson RN, Ostrosky-Zeichner L (2012) (1,3)-d-Glucan as a prognostic marker of treatment response in invasive candidiasis. Clin Infect Dis 55:521–526. https://doi.org/10.1093/cid/cis456

    Article  CAS  Google Scholar 

  86. Angebault C, Lanternier F, Dalle F, et al (2016) Prospective Evaluation of Serum β-Glucan Testing in Patients With Probable or Proven Fungal Diseases. Open Forum Infect Dis 3:ofw128. https://doi.org/10.1093/ofid/ofw128

  87. Koo S, Baden LR, Marty FM (2012) Post-diagnostic kinetics of the (1 → 3)-β-d-glucan assay in invasive aspergillosis, invasive candidiasis and Pneumocystis jirovecii pneumonia. Clin Microbiol Infect 18:E122–E127. https://doi.org/10.1111/j.1469-0691.2012.03777.x

    Article  CAS  Google Scholar 

  88. Tissot F, Lamoth F, Hauser PM et al (2013) β-Glucan antigenemia anticipates diagnosis of blood culture-negative intraabdominal candidiasis. Am J Respir Crit Care Med 188:1100–1109. https://doi.org/10.1164/rccm.201211-2069OC

    Article  Google Scholar 

  89. Poissy J, Sendid B, Damiens S et al (2014) Presence of Candida cell wall derived polysaccharides in the sera of intensive care unit patients: relation with candidaemia and Candida colonisation. Crit Care 18:R135. https://doi.org/10.1186/cc13953

    Article  Google Scholar 

  90. Giacobbe DR, Berruti M, Mikulska M (2019) Prognostic impact of negative serum (1,3)-β-d-glucan in patients with candidemia. Clin Infect Dis. https://doi.org/10.1093/cid/ciz1051

    Article  Google Scholar 

  91. Agnelli C, Bouza E, Martínez-Jiménez MDC et al (2020) Clinical relevance and prognostic value of persistently negative (1,3)-β-d-glucan in adults with candidemia: a 5-year experience in a tertiary hospital. Clin Infect Dis 70:1925–1932. https://doi.org/10.1093/cid/ciz555

    Article  CAS  Google Scholar 

  92. Gintjee TJ, Donnelley MA, Thompson GR (2020) Aspiring antifungals: review of current antifungal pipeline developments. J Fungi 6:28. https://doi.org/10.3390/jof6010028

    Article  CAS  Google Scholar 

  93. Pappas PG, Kauffman CA, Andes DR et al (2015) Clinical practice guideline for the management of candidiasis: 2016 update by the infectious diseases society of America. Clin Infect Dis 62:e1–e50

    Google Scholar 

  94. Cornely OA, Bassetti M, Calandra T et al (2012) ESCMID guideline for the diagnosis and management of Candida diseases 2012: non-neutropenic adult patients. Clin Microbiol Infect 18:19–37. https://doi.org/10.1111/1469-0691.12039

    Article  CAS  Google Scholar 

  95. Reboli AC, Rotstein C, Pappas PG et al (2007) Anidulafungin versus fluconazole for invasive candidiasis. N Engl J Med 356:2472–2482. https://doi.org/10.1056/NEJMoa066906

    Article  CAS  Google Scholar 

  96. Kett DH, Shorr AF, Reboli AC et al (2011) Anidulafungin compared with fluconazole in severely ill patients with candidemia and other forms of invasive candidiasis: support for the 2009 IDSA treatment guidelines for candidiasis. Crit Care 15:R253. https://doi.org/10.1186/cc10514

    Article  Google Scholar 

  97. López-Cortés LE, Almirante B, Cuenca-Estrella M et al (2016) Empirical and targeted therapy of candidemia with fluconazole versus echinocandins: a propensity score–derived analysis of a population-based, multicentre prospective cohort. Clin Microbiol Infect 22:733.e1–733.e8. https://doi.org/10.1016/j.cmi.2016.05.008

    Article  CAS  Google Scholar 

  98. Murri R, Scoppettuolo G, Ventura G et al (2016) Initial antifungal strategy does not correlate with mortality in patients with candidemia. Eur J Clin Microbiol Infect Dis 35:187–193. https://doi.org/10.1007/s10096-015-2527-2

    Article  CAS  Google Scholar 

  99. Bassetti M, Righi E, Ansaldi F et al (2014) A multicenter study of septic shock due to candidemia: outcomes and predictors of mortality. Intensive Care Med 40:839–845. https://doi.org/10.1007/s00134-014-3310-z

    Article  CAS  Google Scholar 

  100. Garnacho-Montero J, Díaz-Martín A, Cantón-Bulnes L et al (2018) Initial antifungal strategy reduces mortality in critically ill patients with candidemia: a propensity score-adjusted analysis of a multicenter study. Crit Care Med 46:384–393. https://doi.org/10.1097/CCM.0000000000002867

    Article  Google Scholar 

  101. Colombo AL, Guimarães T, Sukienik T et al (2014) Prognostic factors and historical trends in the epidemiology of candidemia in critically ill patients: an analysis of five multicenter studies sequentially conducted over a 9-year period. Intensive Care Med 40:1489–1498. https://doi.org/10.1007/s00134-014-3400-y

    Article  Google Scholar 

  102. Kullberg BJ, Viscoli C, Pappas PG et al (2019) Isavuconazole versus caspofungin in the treatment of candidemia and other invasive Candida infections: the ACTIVE trial. Clin Infect Dis 68:1981–1989. https://doi.org/10.1093/cid/ciy827

    Article  CAS  Google Scholar 

  103. Keane S, Geoghegan P, Povoa P et al (2018) Systematic review on the first line treatment of amphotericin B in critically ill adults with candidemia or invasive candidiasis. Expert Rev Anti Infect Ther 16:839–847

    Article  CAS  Google Scholar 

  104. Vazquez J, Reboli AC, Pappas PG et al (2014) Evaluation of an early step-down strategy from intravenous anidulafungin to oral azole therapy for the treatment of candidemia and other forms of invasive candidiasis: results from an open-label trial. BMC Infect Dis. https://doi.org/10.1186/1471-2334-14-97

    Article  Google Scholar 

  105. Tabah A, Bassetti M, Kollef MH et al (2020) Antimicrobial de-escalation in critically ill patients: a position statement from a task force of the European Society of Intensive Care Medicine (ESICM) and European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Critically Ill Patients Study Group (ESGCIP). Intensive Care Med 46:245–265. https://doi.org/10.1007/s00134-019-05866-w

    Article  Google Scholar 

  106. Chatelon J, Cortegiani A, Hammad E et al (2019) Choosing the right antifungal agent in ICU patients. Adv Ther 36:3308–3320

    Article  CAS  Google Scholar 

  107. Bellmann R, Smuszkiewicz P (2017) Pharmacokinetics of antifungal drugs: practical implications for optimized treatment of patients. Infection 45:737–779

    Article  CAS  Google Scholar 

  108. González de Molina FJ, de Martínez-Alberici MLA, Ferrer R (2014) Treatment with echinocandins during continuous renal replacement therapy. Crit Care 18:218

    Article  Google Scholar 

  109. Tverdek FP, Kofteridis D, Kontoyiannis DP (2016) Antifungal agents and liver toxicity: a complex interaction. Expert Rev Anti Infect Ther 14:765–776

    Article  CAS  Google Scholar 

  110. Aguilar G, Azanza JR, Carbonell JA et al (2014) Anidulafungin dosing in critically ill patients with continuous venovenous haemodiafiltration. J Antimicrob Chemother 69:1620–1623. https://doi.org/10.1093/jac/dkt542

    Article  CAS  Google Scholar 

  111. Sherwin J, Heath T, Watt K (2016) Pharmacokinetics and dosing of anti-infective drugs in patients on extracorporeal membrane oxygenation: a review of the current literature. Clin Ther 38:1976–1994

    Article  CAS  Google Scholar 

  112. Watt KM, Cohen-Wolkowiez M, Williams DC et al (2017) Antifungal extraction by the extracorporeal membrane oxygenation circuit. J Extra Corpor Technol 49:150–159

    Google Scholar 

  113. Ruiz S, Papy E, Da Silva D et al (2009) Potential voriconazole and caspofungin sequestration during extracorporeal membrane oxygenation. Intensive Care Med 35:183–184

    Article  Google Scholar 

  114. Spriet I, Annaert P, Meersseman P et al (2009) Pharmacokinetics of caspofungin and voriconazole in critically ill patients during extracorporeal membrane oxygenation. J Antimicrob Chemother 63:767–770. https://doi.org/10.1093/jac/dkp026

    Article  CAS  Google Scholar 

  115. Foulquier JB, Berneau P, Frérou A et al (2019) Liposomal amphotericin B pharmacokinetics in a patient treated with extracorporeal membrane oxygenation. Med Mal Infect 49:69–71. https://doi.org/10.1016/j.medmal.2018.10.011

    Article  CAS  Google Scholar 

  116. Zhao Y, Seelhammer TG, Barreto EF, Wilson JW (2020) Altered pharmacokinetics and dosing of liposomal amphotericin B and isavuconazole during extracorporeal membrane oxygenation. Pharmacotherapy 40:89–95. https://doi.org/10.1002/phar.2348

    Article  CAS  Google Scholar 

  117. Watt KM, Gonzalez D, Benjamin DK et al (2015) Fluconazole population pharmacokinetics and dosing for prevention and treatment of invasive candidiasis in children supported with extracorporeal membrane oxygenation. Antimicrob Agents Chemother 59:3935–3943. https://doi.org/10.1128/AAC.00102-15

    Article  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

CL, TB and IML conceived the idea; CL performed the literature search and drafted the manuscript, which was critically reviewed and revised by IML and TB.

Corresponding author

Correspondence to I. Martin-Loeches.

Ethics declarations

Conflicts of interest

IML has received speaking and advisory board fees from Merck and Gilead Sciences. TB has received speaking fees from Pfizer and speaking, advisory board fees and research support from Gilead Sciences. CL has received research support from Gilead Sciences.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Logan, C., Martin-Loeches, I. & Bicanic, T. Invasive candidiasis in critical care: challenges and future directions. Intensive Care Med 46, 2001–2014 (2020). https://doi.org/10.1007/s00134-020-06240-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-020-06240-x

Keywords

Navigation