Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, Edipidis K, Forni LG, Gomersall CD, Govil D, Honore PM, Joannes-Boyau O, Joannidis M, Korhonen AM, Lavrentieva A, Mehta RL, Palevsky P, Roessler E, Ronco C, Uchino S, Vazquez JA, Vidal Andrade E, Webb S, Kellum JA (2015) Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med 41:1411–1423
PubMed
Article
Google Scholar
Tonelli M, Astephen P, Andreou P, Beed S, Lundrigan P, Jindal K (2002) Blood volume monitoring in intermittent hemodialysis for acute renal failure. Kidney Int 62:1075–1080
PubMed
Article
Google Scholar
Tanguay TA, Jensen L, Johnston C (2007) Predicting episodes of hypotension by continuous blood volume monitoring among critically ill patients in acute renal failure on intermittent hemodialysis. CACCN 18:19–24
Google Scholar
Bitker L, Bayle F, Yonis H, Gobert F, Leray V, Taponnier R, Debord S, Stoian-Cividjian A, Guérin C, Richard J-C (2016) Prevalence and risk factors of hypotension associated with preload-dependence during intermittent hemodialysis in critically ill patients. Crit Care 20:1–11
Article
Google Scholar
Schortgen F, Soubrier N, Delclaux C, Thuong M, Girou E, Brun-Buisson C, Lemaire F, Brochard L (2000) Hemodynamic tolerance of intermittent hemodialysis in critically ill patients: usefulness of practice guidelines. Am J Respir Crit Care Med 162:197–202
CAS
PubMed
Article
Google Scholar
Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Straaten HO-v, Ronco C, Kellum JA (2007) Continuous renal replacement therapy: a worldwide practice survey. The beginning and ending supportive therapy for the kidney (BEST Kidney) investigators. Intensive Care Med 33:1563–1570
PubMed
Article
Google Scholar
Akhoundi A, Singh B, Vela M, Chaudhary S, Monaghan M, Wilson GA, Dillon JJ, Cartin-Ceba R, Lieske JC, Gajic O, Kashani K (2015) Incidence of adverse events during continuous renal replacement therapy. Blood Purif 39:333–339
CAS
PubMed
Article
Google Scholar
Sharma S, Waikar SS (2017) Intradialytic hypotension in acute kidney injury requiring renal replacement therapy. Semin Dial 00:1–6
Google Scholar
Douvris A, Malhi G, Hiremath S, McIntyre L, Silver SA, Bagshaw SM, Wald R, Ronco C, Sikora L, Weber C, Clark EG (2018) Interventions to prevent hemodynamic instability during renal replacement therapy in critically ill patients: a systematic review. Crit Care 22:41
PubMed
PubMed Central
Article
Google Scholar
Silversides JA, Pinto R, Kuint R, Wald R, Hladunewich MA, Lapinsky SE, Adhikari NKJ (2014) Fluid balance, intradialytic hypotension, and outcomes in critically ill patients undergoing renal replacement therapy: a cohort study. Crit Care 18:624
PubMed
PubMed Central
Article
Google Scholar
Augustine JJ, Sandy D, Seifert TH, Paganini EP (2004) A randomized controlled trial comparing intermittent with continuous dialysis in patients with ARF. Am J Kidney Dis 44:1000–1007
PubMed
Article
Google Scholar
Conger JD (1990) Does hemodialysis delay recovery from acute renal failure? Semin Dial 3:146–148
Article
Google Scholar
Kelleher SP, Robinette JB, Miller F, Conger JD (1987) Effect of hemorrhagic reduction in blood pressure on recovery from acute renal failure. Kidney Int 31:725–730
CAS
PubMed
Article
Google Scholar
Doshi M, Murray PT (2003) Approach to intradialytic hypotension in intensive care unit patients with acute renal failure. Artif Organs 27:772–780
PubMed
Article
Google Scholar
Van der Mullen J, Wise R, Vermeulen G, Moonon P-J, Malbrain MLNG (2018) Assessment of hypovolaemia in the critically ill. Anaethesiol Intensive Ther 50:141–149
Article
Google Scholar
Vincent JL, Sakr Y, Sprung CL, Ranieri VM, Reinhart K, Gerlach H (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–353
PubMed
Article
Google Scholar
Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12:R74
PubMed
PubMed Central
Article
Google Scholar
Murugan R, Balakumar V, Kerti SJ, Priyanka P, Chang C-CH, Clermont G, Bellomo R, Palevsky PM, Kellum JA (2018) Net ultrafiltration intensity and mortality in critically ill patients with fluid overload. Crit Care 22:223
PubMed
PubMed Central
Article
Google Scholar
Reilly RF (2014) Attending rounds: a patient with intradialytic hypotension. Clin J Am Soc Nephrol 9:798–803
PubMed
PubMed Central
Article
Google Scholar
Monnet X, Teboul J-L (2015) Passive leg raising: five rules, not a drop of fluid! Crit Care 19:18
PubMed
PubMed Central
Article
Google Scholar
Monnet X, Cipriani F, Camous L, Sentenac P, Dres M, Krastinova E, Anguel N, Richard C, Teboul J-L (2016) The passive leg raising test to guide fluid removal in critically ill patients. Ann Intensive Care 6:46
PubMed
PubMed Central
Article
Google Scholar
Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WH, Mullens W (2013) Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol 62:485–495
PubMed
Article
Google Scholar
Richard L, Converse J, Jacobsen TN, Jost CMT, Toto RD, Graybum PA, Obregon TM, Fouad-Tarazi F, Victor RG (1992) Paradoxical withdrawal of reflex vasoconstriction as a cause of hemodialysis-induced hypotension. J Clin Investig 90:1657–1665
Article
Google Scholar
Shimizu K, Kurosawa T, Sanjo T (2008) Effect of hyperosmolality on vasopressin secretion in intradialytic hypotension: a mechanistic study. Am J Kidney Dis 52:294–304
CAS
PubMed
Article
Google Scholar
Cernaro V, Lacquaniti A, Lorenzano G, Loddo S, Romeo A, Donato V, Lupica R, Buemi A, Buemi M (2012) Apelin, plasmatic osmolality and hypotension in dialyzed patients. Blood Purif 33:317–323
CAS
PubMed
Article
Google Scholar
Stabellini G, Bosi GP, Valeno V, Pellati A, Masotti M, Fiocchi O, Calastrini C, Ricci G (1998) Relation between the osmolality trend and ornithynedecarboxylase activity in red blood cells of uremic patients during hemodialytic treatment. Biomed Pharmacother 52:166–168
CAS
PubMed
Article
Google Scholar
d’Amore Fasanella T, Wauters JP, Waeber B, Nussberger J, Brunner HR (1985) Response of plasma vasopressin to changes in extracellular volume and/or plasma osmolality in patients on maintenance hemodialysis. Clin Nephrol 23:299–302
Google Scholar
Mc Causland FR, Waikar SS (2015) Association of predialysis calculated plasma osmolarity with intradialytic blood pressure decline. Am J Kidney Dis 66:499–506
CAS
PubMed
PubMed Central
Article
Google Scholar
Mc Causland FR, Brunelli SM, Waikar SS (2013) Dialysis dose and intradialytic hypotension: results from the HEMO study. Am J Nephrol 38:388–396
CAS
PubMed
Article
Google Scholar
Henrich WL, Woodard TD, Blachley JD, Gomez-Sanchez C, Pettinger W, Cronin RE (1980) Role of osmolality in blood pressure stability after dialysis and ultrafiltration. Kidney Int 18:480–488
CAS
PubMed
Article
Google Scholar
McCausland FR, Prior LM, Heher E, Waikar SS (2012) Preservation of blood pressure stability with hypertonic mannitol during hemodialysis initiation. Am J Nephrol 36:168–174
CAS
Article
Google Scholar
Lynch KE, Ghassemi F, Flythe JE, Feng M, Ghassemi M, Celi LA, Brunelli SM (2016) Sodium modeling to reduce intradialytic hypotension during haemodialysis for acute kidney injury in the intensive care unit. Nephrology 10:870–877
Article
CAS
Google Scholar
Lima EQ, Silva RG, Donadi E, Fernandes AB, Zanon JR, Pinto K, Burdmann EA (2012) Prevention of intradialytic hypotension in patients with acute kidney injury submitted to sustained low-efficiency dialysis. Ren Fail 34:1238–1243
CAS
PubMed
Article
Google Scholar
Paganini EP, Sandy D, Moreno L, Kozlowski L, Sakai K (1996) The effect of sodium and ultrafiltration modelling on plasma volume changes and haemodynamic instability in intensive care patients receiving haemodialysis for acute renal failure: a prospective, stratified, randomized, cross-over study. Nephrol Dial Transplant 11:32–37
PubMed
Article
Google Scholar
Brummelhuis WJ, van Geest RJ, van Schelven LJ, Boer WH (2009) Sodium profiling, but not cool dialysate, increases the absolute plasma refill rate during hemodialysis. ASAIO J 55:575–580
CAS
PubMed
Article
Google Scholar
Flythe JE, Xue H, Lynch KE, Curhan GC, Brunelli SM (2015) Association of mortality risk with various definitions of intradialytic hypotension. J Am Soc Nephrol 26:724–734
CAS
PubMed
Article
Google Scholar
Yu J, Liu Z, Shen B, Teng J, Zou J, Ding X (2018) Intradialytic hypotension as an independent risk factor for long-term mortality in maintaining hemodialysis patients: a 5-year follow-up cohort study. Blood Purif 45:320–326
CAS
PubMed
Article
Google Scholar
Vincent JL, Backer DD, Wiedermann CJ (2016) Fluid management in sepsis: the potential beneficial effects of albumin. J Crit Care 35:161–167
CAS
PubMed
Article
Google Scholar
Weil MH, Henning RJ, Puri VK (1979) Colloid osmotic pressure: clinical significance. Crit Care Med 7:113–116
CAS
PubMed
Article
Google Scholar
Knoll GA, Grabowski JA, Dervin GF, O’Rourke K (2004) A randomized, controlled trial of albumin versus saline for the treatment of intradialytic hypotension. J Am Soc Nephrol 15:487–492
CAS
PubMed
Article
Google Scholar
Jardin F, Prost JF, Ozier Y, Margairaz A (1982) Hemodialysis in septic patients: improvement in tolerance of fluid removal with concentrated albumin as the priming fluid. Crit Care Med 10:650–652
CAS
PubMed
Article
Google Scholar
Ricci Z, Romagnoli S, Ronco C (2018) The 10 false beliefs in adult critical care nephrology. Intensive Care Med 44:1302–1305
PubMed
Article
Google Scholar
Sherman RA (2016) We lower blood flow for intradialytic hypotension. Semin Dial 29:295–296
PubMed
Article
Google Scholar
Schytz PA, Mace ML, Soja AMB, Nilsson B, Karamperis N, Kristensen B, Ladefoged SD, Hansen HP (2015) Impact of extracorporeal blood flow rate on blood pressure, pulse rate and cardiac output during haemodialysis. Nephrol Dial Transplant 30:2075–2079
CAS
PubMed
PubMed Central
Article
Google Scholar
Trivedi HS, Kukla A, Prowant B, Lim HJ (2007) A study of the extracorporeal rate of blood flow and blood pressure during hemodialysis. Hemodial Int 11:424–429
PubMed
Article
Google Scholar
Eastwood GM, Peck L, Young H, Bailey M, Reade MC, Baldwin I, Bellomo R (2012) Haemodynamic impact of a slower pump speed at start of continuous renal replacement therapy in critically ill adults with acute kidney injury: a prospective before-and-after study. Blood Purif 33:52–58
CAS
PubMed
Article
Google Scholar
Christopher WM, Burton JO, Selby NM, Leccisotti L, Korsheed S, Baker CSR, Camici PG (2008) Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin J Am Soc Nephrol 3:19–26
Article
Google Scholar
Buchanan C, Mohammed A, Cox E, Kohler K, Canaud B, Taal MW, Selby NM, Francis S, McIntyre CW (2017) Intradialytic cardiac magnetic resonance imaging to assess cardiovascular responses in a short-term trial of hemodiafiltration and hemodialysis. J Am Soc Nephrol 28:1269–1277
PubMed
Article
Google Scholar
Aneman A, Vieillard-Baron A (2016) Cardiac dysfunction in sepsis. Intensive Care Med 42:2073–2076
PubMed
Article
Google Scholar
Odudu A, McIntyre CW (2016) An update on intradialytic cardiac dysfunction. Semin Dial 29:435–441
PubMed
Article
Google Scholar
Mahmoud H, Forni LG, McIntyre CW, Selby NM (2017) Myocardial stunning occurs during intermittent haemodialysis for acute kidney injury. Intensive Care Med 43:942–944
PubMed
PubMed Central
Article
Google Scholar
Slessarev M, Salerno F, Ball IM, McIntyre CW (2019) Continuous renal replacement therapy is associated with acute cardiac stunning in critically ill patients. Hemodial Int Int Symp Home Hemodial 3:325–332
Google Scholar
Larkin JW, Reviriego-Mendoza MM, Usvyat LA, Kotanko P, Maddux FW (2017) To cool, or too cool: is reducing dialysate temperature the optimal approach to preventing intradialytic hypotension? Semin Dial 30:501–508
PubMed
Article
Google Scholar
Selby NM, McIntyre CW (2006) A systematic review of the clinical effects of reducing the dialysate fluid temperature. Nephrol Dial Transplant 21:1883–1898
PubMed
Article
Google Scholar
Mustafa RA, Bdair F, Akl EA, Garg AX, Thiessen-Philbrook H, Salameh H, Kisra S, Nesrallah G, Al-Jaishi A, Patel P, Patel P, Mustafa AA, Schünemann HJ (2016) Effect of lowering the dialysate temperature in chronic hemodialysis: a systematic review and meta-analysis. Clin J Am Soc Nephrol 11:442–457
PubMed
Article
Google Scholar
Selby NM, Burton JO, Chesterton LJ, McIntyre CW (2006) Dialysis-induced regional left ventricular dysfunction is ameliorated by cooling the dialysate. Clin J Am Soc Nephrol 1:1216–1225
PubMed
Article
Google Scholar
du Cheyron D, Terzi N, Seguin A, Valette X, Prevost F, Ramakers M, Daubin C, Charbonneau P, Parienti J (2013) Use of online blood volume and blood temperature monitoring during haemodialysis in critically ill patients with acute kidney injury: a single-centre randomized controlled trial. Nephrol Dial Transplant 28:430–437
PubMed
Article
Google Scholar
Edrees FY, Katari S, Baty JD, Vijayan A (2019) A pilot study evaluating the effect of cooler dialysate temperature on hemodynamic stability during prolonged intermittent renal replacement therapy in acute kidney injury. Crit Care Med 47:e74–e80
PubMed
Article
Google Scholar
Rokyta R Jr, Matejovic M, Krouzecky A, Opatrny K Jr, Ruzicka J, Novak I (2004) Effects of continuous venovenous haemofiltration-induced cooling on global haemodynamics, splanchnic oxygen and energy balance in critically ill patients. Nephrol Dial Transpl 19:623–630
Article
Google Scholar
Robert R, Méhaud J, Timricht N, Goudet V, Mimoz O, Debaene B (2012) Benefits of an early cooling phase in continuous renal replacement therapy for ICU patients. Ann Intensive Care 2:40
PubMed
PubMed Central
Article
Google Scholar
Pun PH, Horton JR, Middleton JP (2013) Dialysate calcium concentration and the risk of sudden cardiac arrest in hemodialysis patients. Clin J Am Soc Nephrol 8:797–803
CAS
PubMed
PubMed Central
Article
Google Scholar
Afshinnia F, Belanger K, Palevsky PM, Young EW (2013) Effect of ionized serum calcium on outcomes in acute kidney injury needing renal replacement therapy: secondary analysis of the acute renal failure trial network study. Ren Fail 35:1310–1318
PubMed
Article
Google Scholar
Fellner SK, Lang RM, Neumann A, Spencer KT, Bushinsky DA, Borow KM (1989) Physiological mechanisms for calcium-induced changes in systemic arterial pressure in stable dialysis patients. Hypertension 13:213–218
CAS
PubMed
Article
Google Scholar
Scholze A, Maier A, Stocks F, Karamohamad F, Vetter R, Zidek W, Tepel M (2005) Sustained increase of extracellular calcium concentration causes arterial vasoconstriction in humans. J Hypertens 23:2049–2054
CAS
PubMed
Article
Google Scholar
Schepelmann M, Yarova PL, Lopez-Fernandez I, Davies TS, Brennan SC, Edwards PJ, Aggarwal A, Graça J, Rietdorf K, Matchkov V, Fenton RA, Chang W, Krssak M, Stewart A, Broadley KJ, Ward DT, Price SA, Edwards DH, Kemp PJ, Riccardi D (2016) The vascular Ca2+-sensing receptor regulates blood vessel tone and blood pressure. Am J Physiol Cell Physiol 310:C193–C204
CAS
PubMed
Article
Google Scholar
Vinsonneau C, Allain-Launay E, Blayau C, Darmon M, Cheyron DD, Gaillot T, Honore PM, Monchi M, Ridel C, Robert R, Shortgen F, Souweine B, Vaillant P, Velly L, Osman D, Vong LV (2015) Renal replacement therapy in adult and pediatric intensive care. Ann Intensive Care 5:58
PubMed
PubMed Central
Article
CAS
Google Scholar
Aberegg SK (2016) Ionized calcium in the ICU: should it be measured and corrected? Chest 149:846–855
PubMed
Article
Google Scholar
Haddy FJ, Vanhoutte PM, Feletou M (2006) Role of potassium in regulating blood flow and blood pressure. Am J Physiol Regul Integr Comp Physiol 290:R546–R552
CAS
PubMed
Article
Google Scholar
Dolson GM, Ellis KJ, Bernardo MV, Prakash R, Adrogué HJ (1995) Acute decreases in serum potassium augment blood pressure. Am J Kidney Dis 26:321–326
CAS
PubMed
Article
Google Scholar
Gabutti L, Salvadé I, Luchini B, Soldini D, Burnier M (2011) Haemodynamic consequences of changing potassium concentrations in haemodialysis fluids. BMC Nephrol 12:14
CAS
PubMed
PubMed Central
Article
Google Scholar
Heering P, Ivens K, Thumer O, Brause M, Grabensee B (1999) Acid–base balance and substitution fluid during continuous hemofiltration. Kidney Int 56(Suppl):S37–40
Article
Google Scholar
Tian JH, Ma B, Yang K, Liu Y, Tan J, Liu TX (2015) Bicarbonate- versus lactate-buffered solutions for acute continuous haemodiafiltration or haemofiltration. Cochrane Database Syst Rev 3:CD006819
Google Scholar
Patel S, Raimann JG, Kotanko P (2017) The impact of dialysis modality and membrane characteristics on intradialytic hypotension. Semin Dial 30:518–531
PubMed
Article
Google Scholar
Schindler R, Beck W, Deppisch R, Aussieker M, Wilde A, Göhl H, Frei U (2004) Short bacterial DNA fragments: detection in dialysate and induction of cytokines. J Am Soc Nephrol 15:3207–3214
PubMed
Article
Google Scholar
Brunet P, Berland Y (2000) Water quality and complications of haemodialysis. Nephrol Dial Transplant 15:578–580
CAS
PubMed
Article
Google Scholar
Bommer J, Becker KP, Urbaschek R (1996) Potential transfer of endotoxin across high-flux polysulfone membranes. J Am Soc Nephrol 7:883–888
CAS
PubMed
Article
Google Scholar
Schiffl H (2011) High-flux dialyzers, backfiltration, and dialysis fluid quality. Semin Dial 24:1–4
PubMed
Article
Google Scholar
Ward R (2007) Worldwide water standards for hemodialysis. Hemodial Int 11:S18–S25
Article
Google Scholar
Moore I, Bhat R, Hoenich NA, Kilner AJ, Prabhu M, Orr KE, Kanagasundaram NS (2009) A microbiological survey of bicarbonate-based replacement circuits in continuous veno-venous hemofiltration. Crit Care Med 37:496–500
CAS
PubMed
Article
Google Scholar
Stricker KH, Takala J, Hullin R, Ganter CC (2009) When drugs disappear from the patient: elimination of intravenous medication by hemodiafiltration. Anesth Analg 109:1640–1643
PubMed
Article
Google Scholar
Mohammad A, Zafar N, Feerick A (2010) Cardiac arrest in intensive care unit: case report and future recommendations. Saudi J Anaesth 4:31–34
CAS
PubMed
PubMed Central
Article
Google Scholar
Lynch KE, Ghassemi F, Flythe JE, Feng M, Ghassemi M, Celi LA, Brunelli SM (2016) Sodium modelling to reduce intradialytic hypotension during haemodialysis for acute kidney injury in the intensive care unit. Nephrology 21:870–877
CAS
PubMed
Article
Google Scholar
du Cheyron D, Terzi N, Seguin A, Valette X, Prevost F, Ramakers M, Daubin C, Charbonneau P, Parienti JJ (2013) Use of online blood volume and blood temperature monitoring during haemodialysis in critically ill patients with acute kidney injury: a single-centre randomized controlled trial. Nephrol Dial Transplant Official Publ Eur Dial Transplant Assoc Eur Ren Assoc 28:430–437
Google Scholar
Albino BB, Balbi AL, Ponce D (2014) Dialysis complications in AKI patients treated with extended daily dialysis: is the duration of therapy important? Biomed Res Int 2014:153626
PubMed
Google Scholar