Skip to main content
Log in

Hyperbaric oxygen therapy prevents coagulation disorders in an experimental model of multiple organ failure syndrome

  • Experimental
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To evaluate the effects of hyperbaric oxygen (HBO) therapy on the coagulation cascade using an experimental model of multiple organ failure syndrome (MOFS).

Design

MOFS was induced by zymosan (500 mg/kg i. p.) in rats. HBO therapy (2 ATA) was administered in a cylindrical steel chamber 4 and 11 h after zymosan administration. In a separate set of experiments animals were monitored for 72 h, and systemic toxicity was scored.

Intervention

Eighteen hours after zymosan administration, rats were killed and blood samples were used for analysis of hemocoagulative parameters, hemodynamics, and arterial blood gas.

Main results

Zymosan administration caused MOFS by affecting the coagulation cascade, as shown by a significant increase in plasma levels of fibrinogen, tissue plasminogen activator, inhibitor of tissue plasminogen activator of type 1, and plasma levels of fibrin degradation products vs. control rats. Zymosan-induced MOFS was also characterized by a significant increase in von Willebrand antigen plasma levels vs. controls. Moreover, zymosan administration induced a significant fall in mean arterial blood pressure and alteration in blood gas values. HBO therapy significantly reduced the derangements of coagulation cascade, the fall in mean blood pressure and alteration in blood gas induced by zymosan administration.

Conclusions

The hypercoagulability induced by zymosan could be responsible for organ failure and death. Our data demonstrate that HBO therapy significantly prevents the alteration in the coagulation cascade and arterial blood gas in an experimental model of MOFS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cohen IL (1993) Definition for sepsis and organ failure. The ACCP/SCCM Consensus Conference Committee report. Chest 103:656–666

    Article  PubMed  CAS  Google Scholar 

  2. Bone RC (1991) The pathogenesis of sepsis. Ann Inter Med 115:457–469

    CAS  Google Scholar 

  3. Kidokoro A, Iba T, Fukunaga M, Yagi Y (1996) Alterations in coagulation and fibrinolysis during sepsis. Shock 5:223–228

    Article  PubMed  CAS  Google Scholar 

  4. Dixon B (2004) The role of microvascular thrombosis in sepsis. Anaesth Intensive Care 32:619–629

    PubMed  CAS  Google Scholar 

  5. Short MA (2004) Linking the sepsis triad of inflammation, coagulation, and suppressed fibrinolysis to infants. Adv Neonatal Care 4:258–273

    Article  PubMed  Google Scholar 

  6. van Hinsbergh VW (2001) The endothelium: vascular control of haemostasis. Eur J Obstet Gynecol Reprod Biol 95:198–201

    Article  PubMed  CAS  Google Scholar 

  7. Caille V, Bossi P, Grimaldi D, Vieillard-Baro A (2004) Physiopathology of severe sepsis. Presse Med 33:256–261

    PubMed  Google Scholar 

  8. Cuzzocrea S, Zingarelli B, Sautebin L, Rizzo A, Crisafulli C, Campo GM, Costantino G, Calapai G, Nava F, Di Rosa M, Caputi AP (1997) Multiple organ failure following zymosan-induced peritonitis is mediated by nitric oxide. Shock 4:268–275

    Article  Google Scholar 

  9. Mainous MR, Tso P, Berg RD, Deitch EA (1991) Studies of the route, magnitude and time course of bacterial translocation in a model of systemic inflammation. Arch Surg 126:33–37

    PubMed  CAS  Google Scholar 

  10. Cuzzocrea S, Filippelli A, Zingarelli B, Falciani M, Caputi AP, Rossi F (1997) Role of nitric oxide in a non-septic shock model induced by zymosan in the rat. Shock 7:351–357

    Article  PubMed  CAS  Google Scholar 

  11. Luongo C, Imperatore F, Cuzzocrea S, Filippelli A, Scafuro MA, Mangoni G, Portolano F, Rossi F (1998) Effects of hyperbaric oxygen exposure on zymosan-induced shock model. Crit Care Med 26:1972–1976

    Article  PubMed  CAS  Google Scholar 

  12. Imperatore F, Cuzzocrea S, Luongo C, Liguori G, Scafuro MA, De Angelis A, Rossi F, Caputi AP, Filippelli A (2004) Hyperbaric oxygen therapy prevents vascular derangement during zymosan-induced multiple-organ-failure syndrome. Intensive Care Med 30:1175–1181

    Article  PubMed  Google Scholar 

  13. Lagaud GJ, Stoclet JC, Andriantsitohaina R (1996) Calcium handling and purinoceptor subtypes involved in ATP-induced contraction in rat small mesenteric arteries. J Physiol 492:689–703

    PubMed  CAS  Google Scholar 

  14. Ersoz G, Ocakcioglu B, Bastug M, Ficicilar H, Yavuzer S (1998) Platelet aggregation and release function in hyperbaric oxygenation. Undersea Hyperb Med 25:229–232

    PubMed  CAS  Google Scholar 

  15. McCuskey RS, Urbaschek R, Urbaschek B (1996) The microcirculation during endotoxemia. Cardiovasc Res 32:752–763

    Article  PubMed  CAS  Google Scholar 

  16. Levi M (2004) Current understanding of disseminated intravascular coagulation. Br J Haematol 124:567–576

    Article  PubMed  Google Scholar 

  17. Levi M, de Jonge E, van der Poll T (2003) Sepsis and disseminated intravascular coagulation. J Thromb 16:43–47

    Article  CAS  Google Scholar 

  18. Levi M, de Jonge E, van der Poll T (2004) New treatment strategies for disseminated intravascular coagulation based on current understanding of the pathophysiology. Ann Med 36:41–49

    Article  PubMed  CAS  Google Scholar 

  19. Ito H, Maruyama A, Iwakura K, Takiuchi S, Masuyama T, Hori M, Higashino Y, Fujii K, Minamino T (1999) Clinical implications of the “no reflow” phenomenon. A predictor of complications and left ventricular remodelling in reperfused anterior wall myocardial infarction. Circulation 93:223–228

    Google Scholar 

  20. Regoeczi E, Braian MC (1969) Organ distribution of fibrin in disseminated intravascular coagulation. Br J Haematol 17:73–81

    PubMed  CAS  Google Scholar 

  21. Gando S, Kameue T, Nanzaki S, Nakanishi Y (1996) Disseminated intravascular coagulation is a frequent complication of systemic inflammatory response syndrome. Thromb Haemost 75:224–228

    PubMed  CAS  Google Scholar 

  22. Creasey AA, Chang ACK, Feigen L, Wun TC, Taylor FB Jr, Hinshaw LB (1993) Tissue factor pathway inhibitor reduces mortality from Escherichia coli septic shock. J Clin Invest 91:2850–2856

    Article  PubMed  CAS  Google Scholar 

  23. Kessler CM, Tang Z, Jacobs HM, Szymanski LM (1997) The suprapharmacological dosing of antithrombin concentrate for Staphylococcus aureus-induced disseminate intravascular coagulation in guinea pigs: substantial reduction in mortality and morbidity. Blood 89:4393–4401

    PubMed  CAS  Google Scholar 

  24. Levi M, ten Cate H (1999) Disseminated intravascular coagulation. N Engl J Med 19:586–592

    Article  Google Scholar 

  25. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91:3527–3561

    PubMed  CAS  Google Scholar 

  26. Moore KL, Esmon CT, Esmon NL (1989) Tumor necrosis factor leads to the internalization and degradation of thrombomodulin from the surface of bovine aortic endothelial cells in culture. Blood 73:159–165

    PubMed  CAS  Google Scholar 

  27. Kobayashi M, Ozawa T, Shimada K (1990) Human recombinant interleukin 1B and tumor necrosis factor a mediated suppression of heparin like compounds on cultured porcine aortic endothelial cells. J Cell Physiol 144:383–390

    Article  PubMed  CAS  Google Scholar 

  28. Coliman RW, Robboy SJ, Minna JD (1979) Disseminated intravascular coagulation — a reappraisal. Annu Rev Med 30:359–374

    Article  Google Scholar 

  29. Sharp AA (1977) Diagnosis and management of disseminated intravascular coagulation. Br Med Bull 33:265–272

    PubMed  CAS  Google Scholar 

  30. Lazarchuk J, Kizer J (1987) Interaction of fibrinolytic, coagulation and kinin systems and related pathology. In: Pittiglio DH, Sacher RA (eds) Clinical hematology and fundamentals of hemostasis. Davis, Philadelphia, pp 381–391

    Google Scholar 

  31. Coliman RW, Robboy SJ, Minna JD (1972) Disseminated intravascular coagulation: an approach. Am J Med 52:679–689

    Article  Google Scholar 

  32. Margaglione M, Di Minno G, Grandone E, Secchione G, Celentano E, Cappucci G (1994) Abnormally high circulation levels of tissue plasminogen activator and plasminogen activator inhibitor-1 in patients with a history of ischemic stroke. Arterioscler Thromb 14:1741–1745

    PubMed  CAS  Google Scholar 

  33. Thogersen AM, Jansson JH, Boman K, Nilsson TK, Weineall L, Huhtsaari F, Hallmens G (1998) High plasminogen activator inhibitor and tissue plasminogen activator levels in plasma precede a first acute myocardial infarction in both men and women: evidence for the fibrinolytic system as a independent primary risk factor. Circulation 98:2241–2247

    PubMed  CAS  Google Scholar 

  34. Francis RB Jr, Kawanishi D, Baruch T, Mahrer P, Rahimtoola S, Feinstein DI (1988) Impaired fibrinolysis in coronary heart disease. Am Heart J 115:776–780

    Article  PubMed  Google Scholar 

  35. Hamsten A, de Faire U, Walldius G, Dahlen G, Szamosi A, Landou C (1987) Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 2:3–9

    Article  PubMed  CAS  Google Scholar 

  36. Hamsten A, Wiman B, de Faire U, Blomback M (1985) Increased plasma levels of a rapid inhibitor of tissue plasminogen activator in young survivors of myocardial infarction. N Engl J Med 313:1557–1563

    Article  PubMed  CAS  Google Scholar 

  37. Caputo M, Mantini G, Floriani I, Ciceri M, Noseda A, Bonomo L (1996) Tissue plasminogen activator, tissue plasminogen activator inhibitor and lipoprotein in patients with coronary, epiaortic and peripheral occlusive artery disease. Eur Heart J 17:1329–1336

    PubMed  CAS  Google Scholar 

  38. Smith FB, Lee AJ, Hau CM, Rumley A, Lowe GD, Fowkes FG (2000) Plasma fibrinogen, haemostatic factors and prediction of peripheral arterial disease in the Edinburgh Artery Study. Blood Coagul Fibrinolysis 11:43–50

    Article  PubMed  CAS  Google Scholar 

  39. Yamami N, Shimaya K, Sera AM, Fujita H, Shibayama M, Mano Y, Maruyama M, Mihara H (1996) Alterations of fibrinolytic activity in human during and after hyperbaric oxygen exposure. Appl Human Sci 15:239–242

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Undersea and Hyperbaric Medicine Society. We are grateful to Jean Gilder for editing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Imperatore.

Additional information

This article is discussed in the editorial available at:http://dx.doi.org/10.1007/s00134-006-0379-z.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imperatore, F., Cuzzocrea, S., De Lucia, D. et al. Hyperbaric oxygen therapy prevents coagulation disorders in an experimental model of multiple organ failure syndrome. Intensive Care Med 32, 1881–1888 (2006). https://doi.org/10.1007/s00134-006-0367-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-006-0367-3

Keywords

Navigation