Skip to main content
Log in

Intermittent flow increases endotoxin-induced adhesion of human erythrocytes to vascular endothelial cells

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the effects of different conditions of flow on endotoxin induced adhesion of human red blood cells (RBC) to human umbilical vein endothelial cells (HUVEC).

Design and setting

Prospective, randomized, controlled in vitro study in a university-affiliated cell biology laboratory.

Subjects

Human erythrocytes, human vascular endothelial cells.

Interventions

Superfusion of HUVEC monolayers with human erythrocytes incubated with either saline (CON) or endotoxin (ETX) with different flow pattern (basic flow rates of 0.65 or 1.3 ml/min; intermittent flow, IMF). The CON/0.6, CON/1.3, CON-IMF/1.3 (n=7/group) groups served as control, and in test groups ETX/0.6, ETX/1.3, ETX-IMF/0.6, and ETX-IMF/1.3 (n=7/group) both RBC and HUVECs were incubated with ETX and flow pattern and rates varied. In the IMF experiments flow rates of 0.65 and 1.3 ml/min were combined with stop-and-go flow pattern.

Measurements and results

At continuous flow of 0.65 ml/min erythrocyte adhesion was 61±5 cells/mm2 in CON and 172±25 cells/mm2 after ETX. When flow rate was increased to 1.3 ml/min, adhesion decreased to 27±4 cells/mm2 in CON and 93±18 cells/mm2 after ETX. IMF conditions had no effect on RBC adhesion of naive RBC but increased the number of adhesive erythrocytes after incubation with ETX both at 0.65 ml/min (287±33 cells/mm2) and at 1.3 ml/min (148±13 cells/mm2).

Conclusions

RBC adhesion to vascular endothelium is affected by rate and pattern of blood flow. Higher flow rates or shear forces reduce RBC adhesion while stop-and-go flow pattern favored adhesion of ETX-treated erythrocytes to HUVECs. These findings suggest that altered RBCs interact with altered flow patterns potentially contributing to the microcirculatory injury observed in sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. Telen MJ (2000) Red blood cell surface adhesion molecules: their possible roles in normal human physiology and disease. Semin Hematol 37:130–142

    Article  CAS  Google Scholar 

  2. Tissot Van Patot MC, MacKenzie S, Tucker A, Voelkel NF (1996) Endotoxin-induced adhesion of red blood cells to pulmonary artery endothelial cells. Am J Physiol 270:L28–L36

    Google Scholar 

  3. Eichelbrönner O, Sielenkämper A, Cepinskas G, Sibbald WJ, Chin-Yee IH (2000) Endotoxin promotes adhesion of human erythrocytes to human vascular endothelial cells under conditions of flow. Crit Care Med 28:1865–1870

    Article  Google Scholar 

  4. Morigi M, Zoja C, Figliuzzi M, Foppolo M, Micheletti G, Bontempelli M, Sarronni M, Remuzzi G, Remuzzi A (1995) Fluid shear stress modulates surface expression of adhesion molecules by endothelial cells. Blood 85:1696–1703

    Article  CAS  Google Scholar 

  5. Lipowsky HH, Riedel D, Shi GS (1991) In vivo mechanical properties of leukocytes during adhesion to venular endothelium. Biorheology 28–:53–64

  6. Lawrence MB, McIntire LV, Eskin SG (1987) Effect of flow on polymorphonuclear leukocyte/ endothelial cell adhesion. Blood 70:1284–1290

    Article  CAS  Google Scholar 

  7. Granger HD, Kubes P (1994) The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leukoc Biol 55:662–675

    Article  CAS  Google Scholar 

  8. Van Deventer SJH, Büller HR, ten Cate JW, Aarden LA, Hack CE, Sturk A (1990) Experimental endotoxemia in humans: analysis of cytokine release and coagulation, fibrinolytic and complement pathways. Blood 76:2520–2526

    Article  Google Scholar 

  9. Lam C, Tyml K, Martin C, Sibbald W (1994) Microvascular perfusion is impaired in a rat model of normotensive sepsis. J Clin Invest 94:2077–2083

    Article  CAS  Google Scholar 

  10. Knisely MH, Cowley RH, Hawthorne I, et al (1970) Experimental and clinical separation of hypovolemic and septic shock. Angiology 21:728–744

    Article  CAS  Google Scholar 

  11. Whitworth PW, Cryer HM, Garrison RN, Baumgarten TE, Harris PD (1989) Hypoperfusion of the intestinal microcirculation without decreased cardiac output during live Escherichia coli sepsis in rats. Circ Shock 27:111–122

    CAS  PubMed  Google Scholar 

  12. Hinshaw LB (1996) Sepsis/septic shock: participation of the microcirculation: an abbreviated review. Crit Care Med 24:1072–1078

    Article  CAS  Google Scholar 

  13. Yoshida N, Granger DN, Anderson DC, Rothlein R, Lane C, Kvietys PR (1992) Anoxia/reoxygenation-induced neutrophil adherence to cultured endothelial cells. Am J Physiol 262:H1891–H1898

    CAS  PubMed  Google Scholar 

  14. DeGrendele HC, Estess P, Siegelman MH (1997) Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 278:672–675

    Article  CAS  Google Scholar 

  15. Robinson LA, Tu L, Steeber DA, et al (1998) The role of adhesion molecules in human leukocyte attachment to porcine vascular endothelium: implications for xenotransplantation. J Immunol 161:6931–6938

    CAS  PubMed  Google Scholar 

  16. Clark RA, Alon R, Springer TA (1996) CD44 and hyaluronan dependent rolling interactions of lymphocytes on tonsillar stroma. J Cell Biol 134:1075–1087

    Article  CAS  Google Scholar 

  17. Paloske BL, Howard RJ (1994) Malaria, red cell and the endothelium. Annu Rev Med 144:283

    Article  Google Scholar 

  18. Roberts DD, Sherwood JA, Spitalnik SL, Panton LJ, Howard RJ, Dixxit VM, Frazier WA, Miller LH, Ginsbrug V (1985) Thrombospondin binds falciparum malaria parasitized erythrocytes and may mediate cytoadherence. Nature 318:64–66

    Article  CAS  Google Scholar 

  19. Farquhar I, Martin CM, Lam C, Potter R, Ellis CG, Sibbald WJ (1994) Decreased Capillary Density in vivio in bowel mucosa of rats with normotensive sepsis. J Surg Res 61:190–196

    Article  Google Scholar 

  20. Wautier JL, Paton RC, Wautier MP, Pintigny D, Abadie E, Passa P, Caen JP (1981) Increased adhesion of erythrocytes to endothelial cells in diabetes mellitus and its relation to vascular complications. N Engl J Med 305:237–242

    Article  CAS  Google Scholar 

  21. Ockenhouse CF, Tegoshi T, Maeno Y, Benjamin C, Ho M, Kan KE, Thway Y, Win K, Aikawa M, Lobb R (1992) Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule-1 and vascular cell adhesion molecule-1. J Exp Med 176:1183–1189

    Article  CAS  Google Scholar 

  22. Cooke BM, Rogerson SJ, Brown GV, Coppel RL (1996) Adhesion of Malaria-infected red blood cells to chondroitin Sulfate A under flow conditions. Blood 88:4040–4044

    Article  CAS  Google Scholar 

  23. Setty BN, Stuart MJ (1996) Vascular cell adhesion molecule-1 is involvled in mediating hypoxia-induced sickle red cell adherence to endothelium: potential role in sickle cell disease. Blood 88:2311–2320

    Article  CAS  Google Scholar 

  24. Hebbel PR, Yamada O, Moldow CF, Jacob HS, White JG, Eaton JW (1980) Abnormal adherence of sickle erythrocytes to cultured vascular endothelium: a possible mechanism for microvascular occlusion in sickle cell disease. J Clin Invest 65:154–160

    Article  CAS  Google Scholar 

  25. Cooke BM, Berendt AR, Craig AG, MacGregor J, Newbold CI, Nash GB (1994) Rolling and stationary cytoadhesion of red blood cells parasitized by Plasmodium falsiparum: separate roles for ICAM-1, CD-36 and thrombospondin. Br J Hemotol 87:162–170

    Article  CAS  Google Scholar 

  26. Hebbel R (1997) Perspective series: Cell adhesion in vascular biology. Adhesive interactions of sickle erythrocytes with endothelium. J Clin Invest 99:2561–2564

    Article  CAS  Google Scholar 

  27. Fong Y, Marano MA, Moldawer LL, Wei H, Calvano S, Keney JS, Allison AC, Cerami A, Shires GT, Lowry SF (1990) The acute splanchnic and peripheral tissue metabolic response to endotoxin in humans. J Clin Invest 85:1896–1904

    Article  CAS  Google Scholar 

  28. Carlos TM, Harlan JM (1994) Leukocyte-endothelial adhesion molecules. Blood 84:2068–2101

    Article  CAS  Google Scholar 

  29. Cooke BM, Coppel RL (1995) Cytoadhesion and falciparum malaria: going with the flow. Parasitol Today 11:282–287

    Article  CAS  Google Scholar 

  30. Perry MA, Granger DN (1991) Role of CD11/CD18 in shear rate dependent leukocyte-endothelial cell interactions in cat mesenteric venules. J Clin Invest 87:1798–1804

    Article  CAS  Google Scholar 

  31. Bienvenu K, Russell J, Granger DN (1993) Platelet-activating factor promotes shear rate dependent leukocyte adhesion in postcapillary venules. J Lipid Mediat 8:95–103

    CAS  PubMed  Google Scholar 

  32. Worthen GS, Smedly LA, Tonnesen MG, Ellis D, Voelkel NF, Reeves TJ, Henson PM (1987) Effect of shear stress on adhesive interaction between neutrophils and cultured endothelial cells. J Appl Physiol 63:2031–2041

    Article  CAS  Google Scholar 

  33. Spring FA, Parsons SF (2000) Erythroid cell adhesion molecules. Transfus Med Rev 14:351–363

    Article  CAS  Google Scholar 

  34. Kalra VK, Rattan V, Sultana C, Shen Y, Johnson C, Meiselmann MH (1997) Sickle red cell interaction with endothelial cells augments the expression of adhesion molecules and transendothelial migration of monocytes. Microcirculation 4:130–136

    Google Scholar 

  35. Barabino GA, McIntire LV, Eskin SG, Sears DA, Udden M (1987) Endothelial cell interaction with sickle cell, sickle trait mechanically injured and normal erythrocytes under controlled flow. Blood 70:152–157

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Ron Noseworthy for his assistance in cell harvesting, Dr. Natale for his cooperation in tissue collection, and the nurses of the delivery ward of St. Joseph's Hospital for their generous help in collecting umbilical cords.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian H. Chin-Yee.

Additional information

This research was supported by the Departments of Hematology and Critical Care Medicine, London Health Sciences Centre, London, Ontario, Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichelbrönner, O., Sibbald, W.J. & Chin-Yee, I.H. Intermittent flow increases endotoxin-induced adhesion of human erythrocytes to vascular endothelial cells. Intensive Care Med 29, 709–714 (2003). https://doi.org/10.1007/s00134-003-1698-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-003-1698-y

Keywords

Navigation