Skip to main content

Advertisement

Log in

Skoliose bei spinaler Muskelatrophie

Scoliosis in spinal muscular atrophy

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Bei der 5q-spinalen Muskelatrophie (5q-SMA) handelt es sich um eine autosomal-rezessive neuromuskuläre Erkrankung, welche durch eine biallele Mutation des Survival of motor neuron 1 SMN1-Gens verursacht wird. Der hierdurch entstehende SMN-Mangel verursacht eine progressive Degeneration anteriorer Motorneurone, die zu einer muskulären Atrophie und in zwei Drittel der Fälle zu einer Skoliose führt. In Abhängigkeit von den beschriebenen Subtypen kommt es bei der SMA zu einer zunehmenden Ateminsuffizienz und einem frühen Versterben der PatientInnen. Herausragende Fortschritte in der Grundlagenforschung haben in den letzten Jahren zur Zulassung neuer Therapien geführt, die das Krankheitsbild und dessen Therapie verändern werden. Wir stellen diese innovativen Therapieansätze als auch die operativen Strategien bei Skoliosen vor, und geben einen Ausblick auf zukünftige Herausforderungen.

Abstract

5q-spinal muscular atrophy (5q-SMA) is an autosomal recessive neuromuscular disorder caused by a biallelic mutation of the survival of motor neuron 1 SMN1 gene. The resulting lack of SMN protein causes a progressive degeneration of anterior motor neurons and muscular atrophy, which leads to a progressive scoliosis in two-thirds of affected cases. Depending on the disease subtype and severity, affected patients can subsequently develop respiratory insufficiency, leading to a fatal outcome. Ground-breaking research on this devastating disorder has led to the approval of novel therapies that may alter the clinical course of this disease in the future. Here we present a summary of these new therapies, current operative strategies for 5q-SMA associated scoliosis and provide an outlook for possible implications for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Abbreviations

AAV9:

Adenovirus-assoziierter Vektor 9

CHOP-INTEND:

Children’s Hospital of Philadelphia Infant Test of Neuromuscular Disorders

EMA:

European Medicines Agency

EOS:

„Early-onset“-Skoliose

FDA:

Food and Drug Administration

G‑BA:

Gemeinsamer Bundesausschuss

HFMSE:

Hammersmith Functional Motor Scale Expanded

MFM:

Motor Function Measure

PEG:

Perkutane endoskopische Gastrostomie

SMA:

Spinale Muskelatrophie

SMN1:

Survival of motor neuron Gen 1 (telomeric)

SMN2:

Survival of motor neuron Gen 2 (centromeric)

SMN:

„Survival motor neuron protein“

SMNΔ7:

„Survival motor neuron protein“, fehlendes C‑terminales Exon 7

SSL:

„Sagittal spine length“

Literatur

  1. Brzustowicz LM, Lehner T, Castilla LH et al (1990) Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5q11.2–13.3. Nature 344:540–541

    Article  CAS  Google Scholar 

  2. Burow M, Forst R, Forst J et al (2017) Perioperative complications of scoliosis surgery in patients with Duchenne muscular dystrophy and spinal muscular atrophy, focussing on wound healing disorders. Int J Neurosci 127:479–485

    Article  Google Scholar 

  3. Deguise MO, Baranello G, Mastella C et al (2019) Abnormal fatty acid metabolism is a core component of spinal muscular atrophy. Ann Clin Transl Neurol 6:1519–1532

    Article  CAS  Google Scholar 

  4. European Medicines Agency (2017) First medicine for spinal muscular atrophy—orphan medicine Spinraza recommended by CHMP under accelerated assessment. https://www.ema.europa.eu/en/news/first-medicine-spinal-muscular-atrophy. Zugegriffen: 18. Jan. 2021

  5. Feldkotter M, Schwarzer V, Wirth R et al (2002) Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 70:358–368

    Article  CAS  Google Scholar 

  6. Fujak A, Raab W, Schuh A et al (2012) Operative treatment of scoliosis in proximal spinal muscular atrophy: results of 41 patients. Arch Orthop Trauma Surg 132:1697–1706

    Article  Google Scholar 

  7. Glanzman AM, Mcdermott MP, Montes J et al (2011) Validation of the children’s hospital of Philadelphia infant test of neuromuscular disorders (CHOP INTEND). Pediatr Phys Ther 23:322–326

    Article  Google Scholar 

  8. Glanzman AM, O’hagen JM, Mcdermott MP et al (2011) Validation of the expanded Hammersmith functional motor scale in spinal muscular atrophy type II and III. J Child Neurol 26:1499–1507

    Article  Google Scholar 

  9. Granata C, Cervellati S, Ballestrazzi A et al (1993) Spine surgery in spinal muscular atrophy: long-term results. Neuromuscul Disord 3:207–215

    Article  CAS  Google Scholar 

  10. Granata C, Magni E, Merlini L et al (1990) Hip dislocation in spinal muscular atrophy. Chir Organi Mov 75:177–184

    CAS  PubMed  Google Scholar 

  11. Harpey JP, Charpentier C, Paturneau-Jouas M et al (1990) Secondary metabolic defects in spinal muscular atrophy type II. Lancet 336:629–630

    Article  CAS  Google Scholar 

  12. Hughes MS, Swarup I, Makarewich CA et al (2020) Expert consensus for early onset scoliosis surgery. J Pediatr Orthop 40:e621–e628

    Article  Google Scholar 

  13. Labianca L, Weinstein SL (2019) Scoliosis and spinal muscular atrophy in the new world of medical therapy: providing lumbar access for intrathecal treatment in patients previously treated or undergoing spinal instrumentation and fusion. J Pediatr Orthop B 28:393–396

    Article  Google Scholar 

  14. Lorenz HM, Badwan B, Hecker MM et al (2017) Magnetically controlled devices parallel to the spine in children with spinal muscular atrophy. JB JS Open Access 2:e36

    Article  Google Scholar 

  15. Matesanz SE, Curry C, Gross B et al (2020) Clinical course in a patient with spinal muscular atrophy type 0 treated with nusinersen and onasemnogene abeparvovec. J Child Neurol 35(11):717–723. https://doi.org/10.1177/0883073820928784

    Article  PubMed  Google Scholar 

  16. Mendell JR, Al-Zaidy S, Shell R et al (2017) Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med 377:1713–1722

    Article  CAS  Google Scholar 

  17. Mercuri E, Bertini E, Iannaccone ST (2012) Childhood spinal muscular atrophy: controversies and challenges. Lancet Neurol 11:443–452

    Article  Google Scholar 

  18. Moller P, Moe N, Saugstad OD et al (1990) Spinal muscular atrophy type I combined with atrial septal defect in three sibs. Clin Genet 38:81–83

    Article  CAS  Google Scholar 

  19. Mullender M, Blom N, De Kleuver M et al (2008) A Dutch guideline for the treatment of scoliosis in neuromuscular disorders. Scoliosis 3:14

    Article  Google Scholar 

  20. Munsat TL, Skerry L, Korf B et al (1990) Phenotypic heterogeneity of spinal muscular atrophy mapping to chromosome 5q11.2–13.3 (SMA 5q). Neurology 40:1831–1836

    Article  CAS  Google Scholar 

  21. O’Hagen JM, Glanzman AM, Mcdermott MP et al (2007) An expanded version of the Hammersmith functional motor scale for SMA II and III patients. Neuromuscul Disord 17:693–697

    Article  Google Scholar 

  22. Poets C, Heyer R, von der Hardt H et al (1990) Acute respiratory insufficiency as the initial clinical manifestation of spinal muscular atrophy. Monatsschr Kinderheilkd 138:157–159

    CAS  PubMed  Google Scholar 

  23. Polido GJ, de Miranda MMV, Carvas N et al (2019) Cognitive performance of children with spinal muscular atrophy: a systematic review. Dement Neuropsychol 13:436–443

    Article  Google Scholar 

  24. Prior TW, Leach ME, Finanger E (1993) Spinal muscular atrophy. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (Hrsg) GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993–2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1352/

  25. Ramos DM, D’ydewalle C, Gabbeta V et al (2019) Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. J Clin Invest 129:4817–4831

    Article  CAS  Google Scholar 

  26. Simic G (2008) Pathogenesis of proximal autosomal recessive spinal muscular atrophy. Acta Neuropathol 116:223–234

    Article  CAS  Google Scholar 

  27. Singh NN, Lee BM, Singh RN (2015) Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions. Ann N Y Acad Sci 1341:176–187

    Article  CAS  Google Scholar 

  28. Singh RN, Ottesen EW, Singh NN (2020) The first orally deliverable small molecule for the treatment of spinal muscular atrophy. Neurosci Insights 15:2633105520973985

    Article  Google Scholar 

  29. Spurway AJ, Chukwunyerenwa CK, Kishta WE et al (2016) Sagittal spine length measurement: a novel technique to assess growth of the spine. Spine Deform 4:331–337

    Article  Google Scholar 

  30. Tangsrud SE, Carlsen KC, Lund-Petersen I et al (2001) Lung function measurements in young children with spinal muscle atrophy; a cross sectional survey on the effect of position and bracing. Arch Dis Child 84:521–524

    Article  CAS  Google Scholar 

  31. Teoh KH, Winson DM, James SH et al (2016) Magnetic controlled growing rods for early-onset scoliosis: a 4-year follow-up. Spine J 16:S34–39

    Article  Google Scholar 

  32. Food and Drug Administration (2016) FDA approves first drug for spinal muscular atrophy. https://www.fda.gov/news-events/press-announcements/fda-approves-first-drug-spinal-muscular-atrophy. Zugegriffen: 18. Jan. 2021

  33. Food and Drug Administration (2019) FDA approves innovative gene therapy to treat pediatric patients with spinal muscular atrophy, a rare disease and leading genetic cause of infant mortality. https://www.fda.gov/news-events/press-announcements/fda-approves-innovative-gene-therapy-treat-pediatric-patients-spinal-muscular-atrophy-rare-disease. Zugegriffen: 18. Jan. 2021

  34. Food and Drug Administration (2020) FDA approves oral treatment for spinal muscular atrophy. https://www.fda.gov/news-events/press-announcements/fda-approves-oral-treatment-spinal-muscular-atrophy. Zugegriffen: 18. Jan. 2021

  35. Veerapandiyan A, Connolly AM, Finkel RS et al (2020) Spinal muscular atrophy care in the COVID-19 pandemic era. Muscle Nerve 62(1):46–49. https://doi.org/10.1002/mus.26903

    Article  CAS  PubMed  Google Scholar 

  36. Verhaart IEC, Robertson A, Wilson IJ et al (2017) Prevalence, incidence and carrier frequency of 5q-linked spinal muscular atrophy—a literature review. Orphanet J Rare Dis 12:124

    Article  Google Scholar 

  37. Wijngaarde CA, Brink RC, de Kort FAS et al (2019) Natural course of scoliosis and lifetime risk of scoliosis surgery in spinal muscular atrophy. Neurology 93:e149–e158

    Article  Google Scholar 

  38. Wijngaarde CA, Huisman A, Wadman RI et al (2020) Abnormal coagulation parameters are a common non-neuromuscular feature in patients with spinal muscular atrophy. J Neurol Neurosurg Psychiatry 91:212–214

    Article  Google Scholar 

  39. Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15:228–237

    Article  CAS  Google Scholar 

  40. Wirth B, Karakaya M, Kye MJ et al (2020) Twenty-five years of spinal muscular atrophy research: from phenotype to genotype to therapy, and what comes next. Annu Rev Genomics Hum Genet 21:231–261

    Article  CAS  Google Scholar 

  41. Yeo CJJ, Darras BT (2020) Overturning the paradigm of spinal muscular atrophy as just a motor neuron disease. Pediatr Neurol 109:12–19. https://doi.org/10.1016/j.pediatrneurol.2020.01.003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T.-L. Vu-Han Ph. D..

Ethics declarations

Interessenkonflikt

T.-L. Vu-Han, M. J. Reisener, M. Putzier und M. Pumberger geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vu-Han, TL., Reisener, M.J., Putzier, M. et al. Skoliose bei spinaler Muskelatrophie. Orthopäde 50, 657–663 (2021). https://doi.org/10.1007/s00132-021-04131-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-021-04131-7

Schlüsselwörter

Keywords

Navigation