Skip to main content

Advertisement

Log in

Einfluss der Thermodesinfektion auf die Impaktion spongiöser Knochen

Ein In-vitro-Modell für das femorale Impaction-Bone-Grafting

Influence of thermodisinfection on impaction of cancellous bone

An in vitro model of femoral impaction bone grafting

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Rekonstruktion knöcherner Defekte bei Revisionseingriffen von Endoprothesen mit dem Impaction-Bone-Grafting bietet die Möglichkeit, eine langfristige knöcherne Integration mit guten klinischen Ergebnissen zu gewährleisten. Allogener nativer spongiöser Knochen kommt häufig für dieses Verfahren zur Anwendung. Diese Studie untersucht die Auswirkungen der Thermodesinfektion auf das Impaktionsverhalten von Spongiosa verschiedener Geometrie und die Zementverteilung.

Methode

Die Spongiosa wurde aus den Femurköpfen 7 Monate alter Schweine gewonnen. Eine Hälfte des Kopfes wurde jeweils thermodesinfiziert und die andere verblieb nativ. Es wurden Spongiosachips der Größe 3–5 mm, 5–8 mm und 8–10 mm hergestellt. Die Impaktion in einem Zylindermodell mit 30 mm Innendurchmesser erfolgte mit standardisierter Krafteinwirkung durch einen Impaktor mit einem Fallgewicht von 1450 g. Die optimale Dichteverteilung von Mischungen verschiedener Partikelgrößen des nativen im Vergleich zum thermodesinfizierten Knochen wurde mittels Computertomographie untersucht. Ebenso wurde die Verteilung von Luft, Wasser und Fett gemessen. Die jeweils beste Partikelkombination wurde für die nachfolgende computertomographische Messung der Zementverteilung und der Kontaktfläche zum Knochen in verschiedenen Bereichen des Schafts in jeweils 7 Untersuchungen verwendet. Als statistische Methoden kamen zweifaktorielle Varianzanalysen mit Messwiederholung und Bonferroni-Korrektur, der LSD-post-hoc-Test und der Mann-Whitney-U-Test zur Anwendung. Die Irrtumswahrscheinlichkeit wurde mit α = 5 % angegeben und die statistische Analyse erfolgte mit der Software SPSS® für Windows.

Ergebnisse

Hinsichtlich der Dichteverteilung der Spongiosa und der Kompakta ergab sich entlang des Schafts kein signifikanter Unterschied zwischen thermodesinfizierter und nativer Spongiosa (p > 0,05). Impaktierte native Spongiosa zeigte weniger Lufteinschlüsse, resultierend in einer insgesamt besseren Feststoffdichteverteilung im Vergleich zum thermodesinfizierten Knochen (p < 0,001). Der thermodesinfizierte Knochen wies im Vergleich zu nativer Spongiosa mit tendenziell größeren Partikeln eine segmental vergleichbare Dichteverteilung ohne signifikante Differenz (p > 0,05) auf. Im distalen Schaftbereich zeigte sich das Zementvolumen in Verbindung mit dem nativen Knochen signifikant größer und proximal waren mehr Lufteinschlüsse im thermodesinfizierten Knochen nachweisbar. Die Zementpenetrationsflächen waren für die native Spongiosa insgesamt signifikant größer (p < 0,001).

Schlussfolgerung

Die Impaktion thermodesinfizierter und nativer Spongiosa zeigte eine größere Deformation des prozessierten Knochens ohne signifikanten Unterschied der maximal erreichbaren Dichte. Das Zementvolumen und die Penetration des Zements waren bei nativer und prozessierter Spongiosa proximal ausgeprägter. Die Zementverteilung war für den nativen Knochen nach distal signifikant weiterreichend. Die Stabilisierung des Schafts erscheint somit distal zunehmend von der Dichte der impaktierten Spongiosa abhängig zu sein und korreliert proximal mehr mit der Penetration des Zementes in die porösere Spongiosa.

Abstract

Background

The reconstruction of bony defects during endoprosthesis revision surgery using “impaction bone grafting” leads to the possibility of a longstanding osseous integration to achieve good clinical results. Native allogeneic cancellous bone is often used for the procedure. This study examines the influence of thermodisinfection on the impaction behaviour of cancellous bone of different geometries and on the cement distribution.

Methods

The cancellous bone was obtained from the femoral heads of 7‑month old pigs. One half of the head was thermodisinfected while the other remained native. Bone chips with sizes of 3–5, 5–8 and 8–10 mm were produced. The impaction was performed in a cylinder model with an internal diameter of 30 mm and with standardized impaction force using an impactor with a weight of 1450 g. The best particle combination was used for the subsequent computer tomography examination of the cement distribution and the contact surface to the bone in different parts of the shaft in seven investigations. For statistic measurements two-dimensional variance analysis including repetitions of measurement and Bonferroni correction, the LSD post-hoc-zest and the Mann Whitney U Test were used. The error probability was set at α = 5%. The SPSS® for Windows software was used for the statistical analysis.

Results

The distribution of the cancellous and compacted bone also along the shaft revealed no significant difference between thermodisinfected and native cancellous bone at different levels (p > 0.05). Impacted native cancellous bone showed less inclusion of air, which resulted in a better distribution of density compared with thermodisinfected bone overall (p < 0.001). In the distal shaft area the cement volume was significantly larger in conjunction with the native bone. The overall area of cement penetration appeared to be significantly larger for native cancellous bone (p < 0.001).

Conclusions

The impaction of thermodisinfected and native cancellous bone showed greater deformation of the processed bone without any significant difference in the maximum density reached at different levels. Cement volume and cement penetration were pronounced proximally in native and processed cancellous bone. The cement distribution was significantly more distal for the native bone. Distally, the stabilization of the shaft appears to be increasingly dependent on the density of the impacted spongiosa, while proximally, the penetration of the cement into cancellous bone seems to correlate with porosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Abbreviations

BF:

Knochenspezifischer Faltungskern

BIC:

Bone-Implant-Contact

BMP:

Bone Morphogenetic Proteins

CTDI:

Computed Tomography Dose Index

FOV:

Field of View

HA:

Hydroxylapatit

LSD:

Least Significant Difference

PVC:

Polyvinylchlorid

TCP:

Trikalziumphosphat

Literatur

  1. Albert C, Masri B, Duncan C, Oxland T, Fernlund G (2008) Impaction allografting—the effect of impaction force and alternative compaction methods on the mechanical characteristics of the graft. J Biomed Mater Res Part B Appl Biomater 87:395–405

    Article  PubMed  Google Scholar 

  2. Arts JJC, Walschot LHB, Verdonshot N, Schreurs BW, Buma P (2006) Biological activity of Tri-Calciumphosphate/Hydroxyl-Apatite granules mixed with impacted morselized bone graft. A study in rabbits. J Biomed Mater Res Part B Appl Biomater 81:476–485. https://doi.org/10.1002/jbm.b.30687

    Google Scholar 

  3. Banks MJK, Allen PW, Aldam CH (2003) Results of impaction grafting in revision hip arthroplasty at two to seven years using fresh and irradiated allografts bone. Hip Int 13:1–11

    Google Scholar 

  4. Board TN, Rooney P, Kay PR (2008) Strain imparted during impaction grafting may contribute to bony incorporation: an in vitro study of the release of bmp-7 from allograft. J Bone Joint Surg Br 90-B:821–824

    Article  Google Scholar 

  5. Coathup M, Smith N, KingsBuckland T, Dattani R, Ascroft P, Blunn G (2008) Impaction grafting with a bone-graft substitute in a sheep model of revision hip replacement. J Bone Joint Surg Br 90-B:246–253

    Article  Google Scholar 

  6. Cornu O, Schubert T, Libouton X, Manil O, Godts B, Van Tomme J, Banse X, Delloye C (2009) Particle size influence in an impaction bone grafting model. Comparison of fresh-frozen and freeze dried allografts. J Biomech 42:2238–2242

    Article  PubMed  Google Scholar 

  7. Dunlop DG, Brewster NT, Madabhushi SPG, Usmani AS, Pankaj P, Howie CR (2003) Techniques to improve the shear strength of impacted bone graft. J Bone Joint Surg Br 85-B:639–646

    Article  Google Scholar 

  8. Enneking WF, Mindell ER (1991) Observations on massive retrieved human allografts. J Bone Joint Surg Am A‑73:1123–1142

    Article  Google Scholar 

  9. Fölsch C, Mittelmeier W, von Garrel T, Bilderbeek U, Timmesfeld N, Pruss A, Matter HP (2015) Influence of thermodisinfection and duration of cryopreservation at different temperatures on pull out strength of cancellous bone. Cell Tissue Bank 16:73–81

    Article  PubMed  Google Scholar 

  10. Fölsch C, Kellotat A, Rickert M, Ishaque B, Ahmed G, Pruss A, Jahnke A (2016) Effect of thermodisinfection on mechanic parameters of cancellous bone. Cell Tissue Bank 17:427–437

    Article  PubMed  Google Scholar 

  11. Fosse L, Ronninen H, Lund-Larsen J, Benum P, Grande L (2004) Impacted bone stiffness measured during construction of morsellised bone samples. J Biomech 37:1757–1766

    Article  CAS  PubMed  Google Scholar 

  12. Fosse L, Muller S, Ronningen H, Irgens F, Benum P (2006) Viscoelastic modeling of impacted morsellised bone accurately describes unloading behaviour: An experimental study of stiffness moduli and recoil properties. J Biomech 39:2295–2302

    Article  PubMed  Google Scholar 

  13. Fosse L, Ronningen H, Benum P, Lydersen S, Sandven RB (2006) Factors affecting stiffness properties in impacted morsellized bone used in revision hip surgery: An experimental in vitro study. J Biomed Mater Res A 78:423–431

    Article  PubMed  Google Scholar 

  14. Fosse L, Ronningen H, Benum R, Sanven RB (2006) Influence of water and fat content on compressive stiffness properties of impacted morsellized bone. Acta Orthop 77:15–22

    Article  PubMed  Google Scholar 

  15. Frei H, Mitchell P, Masri BA, Duncan CP, Oxland TR (2004) Allograft impaction and cement penetration after revision hip replacement: a histomorphometric analysis in the cadaver femur. J Bone Joint Surg Br 86-B:771–776

    Article  Google Scholar 

  16. Frei H, Mitchell P, Masri BA, Duncan CP, Oxland TR (2005) Mechanical characteristics of the bone-graft-cement interface after impaction allografting. J Orthop Res 23:9–17

    Article  CAS  PubMed  Google Scholar 

  17. Frei H, O’Connell J, Masri BA, Duncan CP, Oxland TR (2005) Biological and mechanical changes of the bone graft-cement interface after impaction allografting. J Orthop Res 23:1271–1279

    Article  CAS  PubMed  Google Scholar 

  18. Frei H, Gadala MS, Masri BA, Duncan CP, Oxland TR (2006) Cement flow during impaction allografting: a finite element analysis. J Biomech 39:493–502

    Article  PubMed  Google Scholar 

  19. Gehrke T, Gebauer M, Kendoff D (2013) Femoral stem impaction grafting: extending the role of cement. J Bone Joint Surg Br 95-B:92–94

    Article  CAS  Google Scholar 

  20. Gie GA, Linder L, Ling RS, Simon JP, Slooff TJ, Timperley AJ (1993) Impacted cancellous allografts and cement for revision total hip arthroplasty. J Bone Joint Surg Br 75-B:14–21

    Google Scholar 

  21. Giesen EBW, Lamerigts NMP, Verdonschot N, Buma P, Schreurs BW, Huiskes R (1999) Mechanical characteristics of impacted morsellised bone grafts used in revision of total hip arthroplasty. J Bone Joint Surg Br 81-B:1052–1057

    Article  Google Scholar 

  22. van Haaren EH, Smit TH, Phipps K, Wuisman PIJM, Blunn G, Heyligers IC (2005) Tricalcium-phosphate and hydroxapatite bone-graft extender for use in impaction grafting revision surgery. J Bone Joint Surg Br 87-B:267–271

    Article  Google Scholar 

  23. Halliday BR, English HW, Timperley AJ, Gie GA, Ling RS (2003) Femoral impaction grafting with cement in revision total hip replacement: evolution of the technique and results. J Bone Joint Surg Br 85-B:809–817

    Google Scholar 

  24. Hassaballa M, Mehendale S, Poniatowski S, Kalantzis D, Smith E, Learmonth ID (2009) Subsidence of the stem after impaction bone grafting for revision hip replacement using irradiated bone. J Bone Joint Surg Br 91-B:37–43

    Article  Google Scholar 

  25. ten Have BLEF, Brouwer RW, van Biezen FC, Verhaar JAN (2012) Femoral revision surgery with impaction bone grafting. J Bone Joint Surg Br 94-B:615–618

    Article  Google Scholar 

  26. Judas F, Figueiredo MH, Cabrita AMS, Proenca A (2005) Incorporation of impacted morselized bone allografts in rabbits. Transplant Proc 37:2802–2804

    Article  CAS  PubMed  Google Scholar 

  27. Kligman M, Rotem A, Roffman M (2003) Cancellous and cortical morselized allograft in revision total hip replacement: a biomechanical study of implant stability. J Biomech 36:797–802

    Article  PubMed  Google Scholar 

  28. Masterson S, Lidder S, Scott G (2012) Impaction femoral allografting at revision hip arthroplasty. J Bone Joint Surg Br 94-B:51–55

    Article  Google Scholar 

  29. Mjöberg B, Hannsson LI, Selvik G (1984) Instability of total hip prostheses at rotational stress. A roentgen stereo-photogrammetric study. Acta Orthop Scand 55:504–506

    Article  PubMed  Google Scholar 

  30. Oakley J, Kuiper JH (2006) Factors affecting the cohesion of impaction bone graft. J Bone Joint Surg Br 88-B:828–831

    Article  Google Scholar 

  31. Ohashi H, Matsuura M, Ebara T, Okamoto Y, Kou H (2009) Factors influencing the stability of stems fixed with impaction graft in vitro. Clin Orthop Relat Res 467:2266–2273

    Article  PubMed  PubMed Central  Google Scholar 

  32. Omoto O, Yasunaga Y, Adachi N, Deie M, Ochi M (2008) Histological and biomechanical study of impacted cancellous allografts with cement in the femur: a canine model. Arch Orthop Trauma Surg 128:1357–1364

    Article  CAS  PubMed  Google Scholar 

  33. Phillips A, Pankaj P, May F, Taylor K, Howie C, Usmani A (2006) Constitutive models for impacted morsellised cortico-cancellous bone. Biomaterials 27:2162–2170

    Article  CAS  PubMed  Google Scholar 

  34. Phillips ATM, Pankaj DT, Brown TZ, Oram TZ, Howie CR, Usmani AS (2006) The elastic properties of morsellised cortico-cancellous bone graft are dependent on its prior loading. J Biomech 39:1517–1526

    Article  CAS  PubMed  Google Scholar 

  35. Pruss A, Seibold M, Benedix F, Frommelt L, von Garrel T, Gürtler L, Dörffel Y, Pauli G, Göbel UB (2003) Validation of the Marburg bone bank system for thermodisinfection of allogeneic femoral head transplants using selected bacteria, fungi and spores. Biologicals 31:287–294

    Article  PubMed  Google Scholar 

  36. Putzer D, Mayr E, Haid C, Reinthaler A, Nogler M (2011) Impaction bone grafting. J Bone Joint Surg Br 93-B:1049–1053

    Article  Google Scholar 

  37. Putzer D, Coraca-Huber D, Wurm A, Schmoelz W, Nogler M (2014) Optimizing the grain size distribution of allografts in bone impaction grafting. J Orthop Res 32:1024–1029

    Article  PubMed  Google Scholar 

  38. Putzer D, Coraca-Huber D, Wurm A, Schmoelz W, Nogler M (2014) The mechanical stability of allografts after cleaning process: comparison of two preparation methods. J Arthroplasty 29:1642–1646

    Article  PubMed  Google Scholar 

  39. Robinson MC, Fernlund G, Meek RMD, Masri BA, Duncan CP, Oxland TR (2005) Structural characteristics of impaction allografting for revision total hip arthroplasty. Clin Biomech (Bristol, Avon) 20:853–855

    Article  Google Scholar 

  40. Rudert M, Holzapfel BM, von Rottkay E, Holzapfel DE, Noeth U (2015) Impaction bone grafting for the reconstruction of large bone defects in revision knee arthroplasty. Oper Orthop Traumatol 4. https://doi.org/10.1007/s00064-014-0330-3

    Google Scholar 

  41. Schreurs BW, Arts C, Verdonshot N, Buma P, Slooff TJJH, Gardeniers JWM (2006) Femoral Component Revision with use of impaction bone-grafting and a cemented polished stem. J Bone Joint Surg Am 88-A(Suppl. 1 Part 2):259–274

    Article  Google Scholar 

  42. Slooff TJ, Huiskes R, van Horn J, Lemmens AJ (1984) Bone grafting in total hip replacement for acetabular protrusion. Acta Orthop Scand 55:593–596

    Article  CAS  PubMed  Google Scholar 

  43. Tägil M, Aspenberg P (2001) Fibrous tissue armoring increases the mechanical strength of an impacted bone graft. Acta Orthop Scand 72:78–82

    Article  PubMed  Google Scholar 

  44. Voor MJ, Nawab A, Malkani AL, Ullrich CR (2000) Mechanical properties of compacted morselized cancellous bone graft using one-dimensional consolidation testing. J Biomech 33:1683–1688

    Article  CAS  PubMed  Google Scholar 

  45. Wilson MJ, Hook S, Whitehouse SL, Timperley AJ, Gie GA (2016) Femoral impaction bone grafting in revision hip arthroplasty. Bone Joint J 98-B:1611–1619

    Article  CAS  PubMed  Google Scholar 

  46. Windhager R, Hobusch GM, Matzner M (2017) Allogene Knochentransplantate für biologische Rekonstruktionen von Knochendefekten. Orthopäde 46:656–664

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Fölsch.

Ethics declarations

Interessenkonflikt

C. Fölsch, A. Jahnke, A. Groß, G. Martels, G. A. Krombach, M. Rickert und M. Kampschulte geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

C. Fölsch und A. Jahnke teilen sich die Erstautorenschaft, sie haben gleichermaßen zu dem Manuskript beigetragen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fölsch, C., Jahnke, A., Groß, A. et al. Einfluss der Thermodesinfektion auf die Impaktion spongiöser Knochen. Orthopäde 47, 39–51 (2018). https://doi.org/10.1007/s00132-017-3509-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-017-3509-0

Schlüsselwörter

Keywords

Navigation