Skip to main content
Log in

Endoprothetik des älteren Menschen

Biomaterialien, Implantatwahl, Verankerungstechnik

Endoprostheses in the elderly

Biomaterials, implant selection and fixation technique

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Der künstliche Gelenkersatz von Hüft- und Kniegelenk ist eine der größten Erfolgsgeschichten in der Orthopädie. Dank der kontinuierlichen Material- und Designverbesserung sind patientenassoziierte Probleme heute meist multifaktoriell und nur selten auf alleinige Materialprobleme zurückzuführen. Durch die Einführung von quervernetztem Polyäthylen (PE), antioxidativ stabilisiertem PE, Mischkeramiken, keramisierten Oberflächen und Schutzschichten ist das Verschleißproblem deutlich verringert, sodass eine weitere Verbesserung der Verschleißeigenschaften keine merkliche Verbesserung für den Patienten bedeuten wird. In der Prävention und Therapie von Infektionen und implantatassoziierten Unverträglichkeiten existiert hingegen noch Handlungsbedarf. Für das Kniegelenk wird, bedingt durch die Kontaktsituation, PE auch in der Zukunft als Gelenkartikulation nicht ersetzt werden können. Mit dem „mobile bearing“ (bewegliche Plattform) sowie dem „fixed bearing“ (festes Lager) stehen 2 etablierte erfolgreiche Philosophien zur Verfügung, die vergleichbar gute klinische Ergebnisse aufweisen. An der Hüfte wird sich die Keramik-Keramik-Paarung dann durchsetzen, wenn die korrekte Ausrichtung und Montage der Komponenten sichergestellt und damit Probleme wie Geräuschentwicklung und Bruch auf ein Minimum reduziert werden können. Die Korrosion von Konusverbindungen kann nur durch ein besseres mechanisches und elektrochemisches Verständnis der Limitation von Konusverbindungen reduziert werden. Die gleichzeitige Berücksichtigung aller Einflussfaktoren verbessert die Problematik maßgeblich wie auch die Verwendung nichtmetallischer Materialien. Beim älteren Patienten werden auch wirtschaftliche Zwänge im Gesundheitssystem die Wahl der Materialien bestimmen.

Abstract

The replacement of hip and knee joints is one of the greatest success stories in orthopedics. Due to continuous improvement of biomaterials and implant design, patient-associated problems are now mostly multifactorial and only rarely caused by the implant. Abrasion was significantly reduced by the introduction of highly cross-linked polyethylene (PE), antioxidant stabilized PE, new ceramics and the development of ceramic and protective surfaces. It is assumed that further reduction of frictional resistance will not lead to a significantly better clinical result: however, the problem of periprosthetic infections and implant-related incompatibility is still unsolved and remains challenging for biomaterial research. For the knee joint PE will be irreplaceable for joint articulation even in the future due to the contact situation. Mobile bearings and fixed bearings are two established successful philosophies, which have shown comparably good clinical results. For the hip joint, it is forecasted that ceramic-on-ceramic will be the system of the future if the correct positioning and mounting of the components can be solved so that the problems, such as development of noise and breakage can be reduced to a minimum. An in-depth understanding and detailed knowledge of the biomaterials by the surgeon can prevent implant-related problems. For elderly patients it is assumed that the economic burden on the public healthcare system will have the strongest impact on implant selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Australian Orthopedic Association (2013) Annual report hip and knee Arthroplasty of the National Joint Registry 2015. Australian Orthopedic Association, Sydney (aoanjrr.dmac.adelaide.edu.au/annual-reports-2015)

    Google Scholar 

  2. National Joint Registry (2015) 12th annual report for England, Wales, Northern Ireland and the Isle of Man. National Joint Registry, Hemel Hempstead (www.njrreports.org.uk)

    Google Scholar 

  3. Anand R, Graves SE, de Steiger RN et al (2011) What is the benefit of introducing new hip and knee prostheses? J Bone Joint Surg Am 93(Suppl 3):51–54

    Article  PubMed  Google Scholar 

  4. Morlock MM (2015) The taper disaster – how could it happen? Hip Int 25(4):339–346

    Article  PubMed  Google Scholar 

  5. Charnley J (1972) The long-term results of low-friction arthroplasty of the hip performed as a primary intervention. J Bone Joint Surg Br 54(1):61–76

    CAS  PubMed  Google Scholar 

  6. Ring PA (1978) Five to fourteen year interim results of uncemented total hip arthroplasty. Clin Orthop Relat Res(137):87–95. doi:10.1097/00003086-197811000-00012

    PubMed  Google Scholar 

  7. McKellop H, Park SH, Chiesa R et al (1996) In vivo wear of three types of metal on metal hip prostheses during two decades of use. Clin Orthop Relat Res 329(Suppl):S128–S140. doi:10.1097/00003086-199608001-00013

    Article  Google Scholar 

  8. Hwang KT, Kim YH, Kim YS, Choi IY (2011) Cementless total hip arthroplasty with a metal-on-metal bearing in patients younger than 50 years. J Arthroplasty 26(8):1481–1487

    Article  PubMed  Google Scholar 

  9. McMinn DJ, Daniel J, Ziaee H, Pradhan C (2011) Indications and results of hip resurfacing. Int Orthop 35(2):231–237

    Article  CAS  PubMed  Google Scholar 

  10. Amstutz HC, Le Duff MJ (2008) Eleven years of experience with metal-on-metal hybrid hip resurfacing: a review of 1000 conserve plus. J Arthroplasty 23(6 Suppl 1):36–43

    Article  PubMed  Google Scholar 

  11. National Joint Registry (2010) 7th annual report for England and Wales. National Joint Registry, Hemel Hempstead

    Google Scholar 

  12. Gunther KP, Schmitt J, Campbell P et al (2013) Consensus statement “Current evidence on the management of metal-on-metal bearings” – April 16, 2012. Hip Int 23(1):2–5

    Article  PubMed  Google Scholar 

  13. Field RE, Rajakulendran K, Eswaramoorthy VK, Rushton N (2012) Three-year prospective clinical and radiological results of a new flexible horseshoe acetabular cup. Hip Int 22(6):598–606

    Article  PubMed  Google Scholar 

  14. Nakahara I, Takao M, Bandoh S, Bertollo N, Walsh WR, Sugano N (2012) Novel surface modifications of carbon fiber-reinforced polyetheretherketone hip stem in an ovine model. Artif Organs 36(1):62–70

    Article  CAS  PubMed  Google Scholar 

  15. Li CS, Vannabouathong C, Sprague S, Bhandari M (2015) The use of carbon-fiber-reinforced (CFR) PEEK material in orthopedic implants: a systematic review. Clin Med Insights Arthritis Musculoskelet Disord 8:33–45

    Article  PubMed  PubMed Central  Google Scholar 

  16. Angthong C, Chumchuen S, Khadsongkram A (2013) A systematic review of intermediate-term outcomes and failure rates for total ankle replacements: an Asian perspective. Foot Ankle Surg 19(3):148–154

    Article  PubMed  Google Scholar 

  17. Nakamura S, Ito H, Kobayashi M et al (2014) Are the long term results of a high-flex total knee replacement affected by the range of flexion? Int Orthop 38(4):761–766

    Article  PubMed  Google Scholar 

  18. Bergschmidt P, Bader R, Ganzer D et al (2015) Prospective multi-centre study on a composite ceramic femoral component in total knee arthroplasty: five-year clinical and radiological outcomes. Knee 22(3):186–191

    Article  PubMed  Google Scholar 

  19. Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34(34):8533–8554

    Article  CAS  PubMed  Google Scholar 

  20. Sonntag R, Kretzer JP (Hrsg) (2015) Materials for total joint arthroplasty. Imperial College Press, London

    Google Scholar 

  21. Cook RB, Bolland BJ, Wharton JA, Tilley S, Latham JM, Wood RJ (2013) Pseudotumour formation due to tribocorrosion at the taper interface of large diameter metal on polymer modular total hip replacements. J Arthroplasty 28(8):1430–1436

    Article  PubMed  Google Scholar 

  22. Mittelmeier H (1984) Hip joint replacement in young patients. Z Orthop Ihre Grenzgeb 122(1):20–26

    Article  CAS  PubMed  Google Scholar 

  23. Stewart TD, Tipper JL, Insley G, Streicher RM, Ingham E, Fisher J (2003) Long-term wear of ceramic matrix composite materials for hip prostheses under severe swing phase microseparation. J Biomed Mater Res B Appl Biomater 66(2):567–573

    Article  PubMed  Google Scholar 

  24. Oberbach T, Begand S, Glien W (2007) In-vitro wear of different ceramic couplings. Key Eng Mater 330–332:1231–1234

    Article  Google Scholar 

  25. Kuntz M, Masson B, Pandorf Th (2009) Current state of the rrt of the ceramic composite material Biolox(R)delta. In: Mendes G, Lago B (Hrsg) Strength of materials. Nova Science, New York, S 133–155

    Google Scholar 

  26. McDonnell SM, Boyce G, Bare J, Young D, Shimmin AJ (2013) The incidence of noise generation arising from the large-diameter Delta Motion ceramic total hip bearing. Bone Joint J 95-B(2):160–165

    Article  CAS  PubMed  Google Scholar 

  27. Collier JP, Sperling DK, Currier JH, Sutula LC, Saum KA, Mayor MB (1996) Impact of gamma sterilization on clinical performance of polyethylene in the knee. J Arthroplasty 11(4):377–389

    Article  CAS  PubMed  Google Scholar 

  28. Bragdon CR, Barrett S, Martell JM, Greene ME, Malchau H, Harris WH (2006) Steady-state penetration rates of electron beam-irradiated, highly cross-linked polyethylene at an average 45-month follow-up. J Arthroplasty 21(7):935–943

    Article  PubMed  Google Scholar 

  29. Kurtz SM, Gawel HA, Patel JD (2011) History and systematic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin Orthop Relat Res 469(8):2262–2277

    Article  PubMed  PubMed Central  Google Scholar 

  30. Collier JP, Currier BH, Kennedy FE et al (2003) Comparison of cross-linked polyethylene materials for orthopaedic applications. Clin Orthop Relat Res 414:289–304

    Article  Google Scholar 

  31. Asano T, Akagi M, Clarke IC, Masuda S, Ishii T, Nakamura T (2007) Dose effects of cross-linking polyethylene for total knee arthroplasty on wear performance and mechanical properties. J Biomed Mater Res B Appl Biomater 83(2):615–622

    Article  PubMed  Google Scholar 

  32. Akagi M, Asano T, Clarke IC et al (2006) Wear and toughness of crosslinked polyethylene for total knee replacements: a study using a simulator and small-punch testing. J Orthop Res 24(10):2021–2027

    Article  PubMed  Google Scholar 

  33. Morlock MM, Bishop N, Kaddick C (2011) Which hip articulation bearing for which patient? : Tribology of the future. Orthopäde 40(12):1061–1067

    Article  CAS  PubMed  Google Scholar 

  34. Kurtz SM (2004) The UHMWPE handbook. Elsevier Academic Press, London

    Google Scholar 

  35. Porter DA, Urban RM, Jacobs JJ, Gilbert JL, Rodriguez JA, Cooper HJ (2014) Modern trunnions are more flexible: a mechanical analysis of THA taper designs. Clin Orthop Relat Res 472(12):3963–3970

    Article  PubMed  PubMed Central  Google Scholar 

  36. Svensson O, Mathiesen EB, Reinholt FP, Blomgren G (1988) Formation of a fulminant soft-tissue pseudotumor after uncemented hip arthroplasty. A case report. J Bone Joint Surg Am 70(8):1238–1242

    Article  CAS  PubMed  Google Scholar 

  37. Goldberg JR, Gilbert JL, Jacobs JJ, Bauer TW, Paprosky W, Leurgans S (2002) A multicenter retrieval study of the taper interfaces of modular hip prostheses. Clin Orthop Relat Res 401:149–161

    Article  Google Scholar 

  38. Black J, Maitin EC, Gelman H, Morris DM (1983) Serum concentrations of chromium, cobalt and nickel after total hip replacement: a six month study. Biomaterials y;4(3):160–164

    Article  Google Scholar 

  39. Donaldson FE, Coburn JC, Siegel KL (2014) Total hip arthroplasty head-neck contact mechanics: a stochastic investigation of key parameters. J Biomech 47(7):1634–1641

    Article  PubMed  Google Scholar 

  40. Goldberg JR, Gilbert JL (2003) In vitro corrosion testing of modular hip tapers. J Biomed Mater Res B Appl Biomater 64(2):78–93

    Article  PubMed  Google Scholar 

  41. VDI (2016) Biomaterialien in der Medizin – Klassifikation, Anforderungen und Anwendungen. VDI 5701:2016–09. Beuth, Berlin

    Google Scholar 

  42. Li T, Zhuang Q, Weng X, Zhou L, Bian Y (2013) Cemented versus uncemented hemiarthroplasty for femoral neck fractures in elderly patients: a meta-analysis. PLOS ONE 8(7):e68903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Talsnes O, Hjelmstedt F, Pripp AH, Reikeras O, Dahl OE (2013) No difference in mortality between cemented and uncemented hemiprosthesis for elderly patients with cervical hip fracture. A prospective randomized study on 334 patients over 75 years. Arch Orthop Trauma Surg 133(6):805–809

    Article  CAS  PubMed  Google Scholar 

  44. Deangelis JP, Ademi A, Staff I, Lewis CG (2012) Cemented versus uncemented hemiarthroplasty for displaced femoral neck fractures: a prospective randomized trial with early follow-up. J Orthop Trauma 26(3):135–140

    Article  PubMed  Google Scholar 

  45. Mann KA, Miller MA (2014) Fluid-structure interactions in micro-interlocked regions of the cement-bone interface. Comput Methods Biomech Biomed Engin 17(16):1809–1820

    Article  PubMed  Google Scholar 

  46. de Gebert UA, Puschel V, Puschel K, Morlock MM, Bishop NE (2012) Influence of time in-situ and implant type on fixation strength of cemented tibial trays – a post mortem retrieval analysis. Clin Biomech (Bristol, Avon) 27(9):929–935

    Article  Google Scholar 

  47. Wang J, Stein EM, Zhou B et al (2016) Deterioration of trabecular plate-rod and cortical microarchitecture and reduced bone stiffness at distal radius and tibia in postmenopausal women with vertebral fractures. Bone 88:39–46

    Article  PubMed  Google Scholar 

  48. Skinner D, Tadros BJ, Bray E, Elsherbiny M, Stafford G (2016) Clinical outcome following primary total hip or knee replacement in nonagenarians. Ann R Coll Surg Engl 98(4):258–264

    Article  CAS  PubMed  Google Scholar 

  49. Marx B, Marx R, Reisgen U, Wirtz D (2015) Bone cement adhesion on ceramic surfaces – surface activation of retention surfaces of knee prostheses by atmospheric plasma versus thermal surface treatment. Z Orthop Unfall 153(2):146–152

    Article  CAS  PubMed  Google Scholar 

  50. Classen, Jäger et al. (2017) Orthopäde. doi:10.1007/s00132-016-3364-4

  51. Ong KL, Day JS, Manley MT, Kurtz SM, Geesink R (2009) Biomechanical comparison of 2 proximally coated femoral stems: effects of stem length and surface finish. J Arthroplasty 24(5):819–824

    Article  PubMed  Google Scholar 

  52. Gauci MO, Winter M, Dumontier C, Bronsard N, Allieu Y (2016) Clinical and radiologic outcomes of pyrocarbon radial head prosthesis: midterm results. J Shoulder Elbow Surg 25(1):98–104

    Article  PubMed  Google Scholar 

  53. Leng H, Reyes MJ, Dong XN, Wang X (2013) Effect of age on mechanical properties of the collagen phase in different orientations of human cortical bone. Bone 55(2):288–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gibon E, Lu L, Goodman SB (2016) Aging, inflammation, stem cells, and bone healing. Stem Cell Res Ther 7:44

    Article  PubMed  PubMed Central  Google Scholar 

  55. Mannucci E, Dicembrini I (2015) Drugs for type 2 diabetes: role in the regulation of bone metabolism. Clin Cases Miner Bone Metab 12(2):130–134

    PubMed  PubMed Central  Google Scholar 

  56. Nielen JT, de Vries F, Dagnelie PC et al (2016) Use of thiazolidinediones and the risk of elective hip or knee replacement: a population based case-control study. Br J Clin Pharmacol 81(2):370–378

    Article  CAS  PubMed  Google Scholar 

  57. Schoeman MA, Pijls BG, Oostlander AE et al (2016) Innate immune response and implant loosening: Interferon gamma is inversely associated with early migration of total knee prostheses. J Orthop Res 34(1):121–126

    Article  CAS  PubMed  Google Scholar 

  58. Utsal L, Tillmann V, Zilmer M et al (2014) Serum interferon gamma concentration is associated with bone mineral density in overweight boys. J Endocrinol Invest 37(2):175–180

    Article  CAS  PubMed  Google Scholar 

  59. Bravo D, Wagner ER, Larson DR, Davis MP, Pagnano MW, Sierra RJ (2016) No increased risk of knee arthroplasty failure in patients with positive skin patch testing for metal hypersensitivity: a matched cohort study. J Arthroplasty 31(8):1717–1721

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Morlock Ph.D..

Ethics declarations

Interessenkonflikt

M.M. Morlock ist Berater der Firmen DePuy und Zimmer. Das Institut für Biomechanik erhält projektbezogene finanzielle Unterstützung von den Firmen Peter Brehm und DePuy. M. Jäger gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morlock, M.M., Jäger, M. Endoprothetik des älteren Menschen. Orthopäde 46, 4–17 (2017). https://doi.org/10.1007/s00132-016-3361-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-016-3361-7

Schlüsselwörter

Keywords

Navigation