Skip to main content
Log in

Komplikationen bei Metall-Metall-Gleitpaarungen

Complications of metal-on-metal tribological pairing

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Metall-Metall-(Metal-on-metal[MoM])-Gleitpaarungen erzeugen weniger volumetrischen Abrieb als Paarungen mit herkömmlichem Polyethylen und sind mit einem geringeren Risiko an Materialversagen gegenüber anderen Hart-Hart-Paarungen verbunden. Ein gehäuftes Auftreten von Komplikationen hat in den vergangenen Jahren zu einer deutlichen Verunsicherung geführt. Vor diesem Hintergrund sollen im Rahmen der vorliegenden Arbeit aktuelle Aspekte der Epidemiologie, Ätiologie, Diagnostik und Behandlung von Komplikationen bei MoM-Hüftendoprothesen besprochen werden.

Epidemiologie/Ätiologie

Anhand von Ergebnissen aus nationalen Endoprothesenregistern und ausgewählten klinischen Studien wird eine Bewertung der Rate lokaler Komplikationen von MoM-Gleitpaarungen vorgenommen. Dabei wird eine Unterscheidung von MoM-Paarungen in gestielte Kleinkopfendoprothesen (≤ 32 mm), Großkopf- (> 32 mm) sowie OFE-Endoprothesen vorgenommen. MoM-Endoprothesen setzen jährlich pro Patient durchschnittlich 1012–1014 Kobalt(Co)- und Chrom(Cr)-Nanopartikel frei. Die Freisetzung von Metallionen bzw. -partikeln kann zu unterschiedlichen Gewebereaktionen führen.

Diagnostik

Zwischen der regulären Routinediagnostik im Rahmen der Implantatnachsorge und spezifischen Untersuchungen beim Auftreten von Beschwerden muss unterschieden werden. Die Diagnostik bei mit Metall-Metall-Hüftendoprothesen versorgten Patienten umfasst ein standardisiertes, stufenförmiges Vorgehen unter Würdigung möglicher Differenzialdiagnosen und Nutzung aktueller laborchemischer und radiologischer Methoden. Beim Auftreten von Beschwerden sollten metallosebedingte Beschwerden vorrangig von mechanischen Problemen (z. B. Prothesenlockerung, Impingement etc.) und Symptomen im Rahmen eines periprothetischen Infekts abgegrenzt werden.

Komplikationstherapie

Für periprothetische Infektionen, Frakturen und sonstige allgemeine Komplikationen gelten die üblichen Standards in der Hüftendoprothetik. Spezifische Maßnahmen ergeben sich jedoch bei den Komplikationen, die auf metallspezifische Risiken zurückgeführt werden können.

Abstract

Background

Metal-on-metal (MoM) tribological pairing results in less volumetric abrasion than pairing with the conventionally used polyethylene and is associated with a lower risk of material failure compared to other hard-hard pairings. An increased frequency of problem cases in recent years has led to a great increase in uncertainty. Against this background in this article the current aspects of epidemiology, etiology, diagnostics and treatment of complications in MoM hip joint endoprostheses will be discussed.

Epidemiology and etiology

Based on the results from national endoprosthesis registers and selected clinical studies an evaluation of the rate of local complications from MoM tribological pairings was undertaken. A differentiation was made between MoM pairings in pedicled small head prostheses (≤ 32 mm), large head (> 32 mm) and surface replacement (OFE) endoprostheses. Each year MoM endoprostheses release on average 1012–1014 cobalt (Co) and chromium (Cr) nanoparticles per patient. This release of metal ions and particles can lead to a variety of tissue reactions.

Diagnostics

A differentiation must be made between regular routine diagnostics within the framework of implant follow-up screening and specific investigations due to the occurrence of complaints. The diagnostics for patients treated with MoM hip endoprostheses consists of a standardized step-wise approach considering possible differential diagnoses and the utilization of modern laboratory chemical and radiological methods. When problems occur, a differentiation should preferentially be made between complaints not caused by metal and mechanical problems (e.g. prosthesis loosening and impingement) and symptoms due to periprosthetic infections.

Therapy of complications

The normal standards for hip endoprosthetics are also valid for periprosthetic infections, fractures and other general complications. Specific measures are, however, necessary for complications due to metal-specific risks

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Australian Orthopaedic Association National Joint Replacement Registry. Annual Report 2012. https://aoanjrr.dmac.adelaide.edu.au/annual-reports-2012. 2013

  2. Eswaramoorthy V, Moonot P, Kalairajah Y et al (2008) The Metasul metal-on-metal articulation in primary total hip replacement: clinical and radiological results at ten years. J Bone Joint Surg [Br] 90(10):1278–1283

    Google Scholar 

  3. Grubl A, Marker M, Brodner W et al (2007) Long-term follow-up of metal-on-metal total hip replacement. J Orthop Res 25(7):841–848

    Article  PubMed  Google Scholar 

  4. Zenz P, Stiehl JB, Knechtel H et al (2009) Ten-year follow-up of the non-porous Allofit cementless acetabular component. J Bone Joint Surg [Br] 91(11):1443–1447

    Google Scholar 

  5. Baur W, Honle W, Willert HG, Schuh A (2005) Pathological findings in tissue surrounding revised metal/metal articulations. Orthopade 34(3):225–233

    Article  CAS  PubMed  Google Scholar 

  6. Bosker BH, Ettema HB, Boomsma MF et al (2012) High incidence of pseudotumour formation after large-diameter metal-on-metal total hip replacement: a prospective cohort study. J Bone Joint Surg [Br] 94(6):755–761

    Google Scholar 

  7. Bolland BJ, Culliford DJ, Langton DJ et al (2011) High failure rates with a large-diameter hybrid metal-on-metal total hip replacement: clinical, radiological and retrieval analysis. J Bone Joint Surg [Br] 93(5):608–615

    Google Scholar 

  8. Langton DJ, Jameson SS, Joyce TJ et al (2010) Early failure of metal-on-metal bearings in hip resurfacing and large-diameter total hip replacement: a consequence of excess wear. J Bone Joint Surg [Br] 92(1):38–46

    Google Scholar 

  9. Meyer H, Mueller T, Goldau G et al (2012) Corrosion at the cone/taper interface leads to failure of large-diameter metal-on-metal total hip arthroplasties. Clin Orthop Relat Res 470(11):3101–3108

    Article  PubMed  Google Scholar 

  10. Langton DJ, Sidaginamale R, Lord JK et al (2012) Taper junction failure in large-diameter metal-on-metal bearings. Bone Joint Res 1(4):56–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Singh G, Meyer H, Ruetschi M et al (2013) Large-diameter metal-on-metal total hip arthroplasties: a page in orthopedic history? J Biomed Mater Res A. doi:10.1002/jbm.a.34619

  12. Gunther KP, Lutzner J, Hannemann F et al (2013) Update on metal-on-metal hip joints. Orthopade 42(5):373–390

    Article  PubMed  Google Scholar 

  13. Daniel J, Ziaee H, Kamali A et al (2010) Ten-year results of a double-heat-treated metal-on-metal hip resurfacing. J Bone Joint Surg [Br] 92(1):20–27

    Google Scholar 

  14. Treacy RB, McBryde CW, Shears E, Pynsent PB (2011) Birmingham hip resurfacing: a minimum follow-up of ten years. J Bone Joint Surg [Br] 93(1):27–33

    Google Scholar 

  15. Hartmann A, Lutzner J, Kirschner S et al (2012) Do survival rate and serum ion concentrations 10 years after metal-on-metal hip resurfacing provide evidence for continued use? Clin Orthop Relat Res 470(11):3118–3126

    Article  PubMed  Google Scholar 

  16. National Joint Registry for England and Wales. 9th annual report 2012. The NRJ Centre, Hemel Hemstead. http://www.njrcentre.org.uk. 2012

  17. Langton DJ, Sprowson AP, Joyce TJ et al (2009) Blood metal ion concentrations after hip resurfacing arthroplasty: a comparative study of articular surface replacement and Birmingham hip resurfacing arthroplasties. J Bone Joint Surg [Br] 91(10):1287–1295

    Google Scholar 

  18. Griffin WL, Nanson CJ, Springer BD et al (2010) Reduced articular surface of one-piece cups: a cause of runaway wear and early failure. Clin Orthop Relat Res 468(9):2328–2332

    Article  PubMed  Google Scholar 

  19. Pandit H, Glyn-Jones S, McLardy-Smith P et al (2008) Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg [Br] 90(7):847–851

    Google Scholar 

  20. Kwon YM, Ostlere SJ, McLardy-Smith P et al (2011) „Asymptomatic“ pseudotumors after metal-on-metal hip resurfacing arthroplasty: prevalence and metal ion study. J Arthroplasty 26(4):511–518

    Article  PubMed  Google Scholar 

  21. Matthies AK, Skinner JA, Osmani H et al (2012) Pseudotumors are common in well-positioned low-wearing metal-on-metal hips. Clin Orthop Relat Res 470(7):1895–1906

    Article  PubMed  Google Scholar 

  22. Williams DH, Greidanus NV, Masri BA et al (2011) Prevalence of pseudotumor in asymptomatic patients after metal-on-metal hip arthroplasty. J Bone Joint Surg [Am] 93(23):2164–2171

    Google Scholar 

  23. Hart AJ, Satchithananda K, Liddle AD et al (2012) Pseudotumors in association with well-functioning metal-on-metal hip prostheses: a case-control study using three-dimensional computed tomography and magnetic resonance imaging. J Bone Joint Surg [Am] 94(4):317–325

    Google Scholar 

  24. o A (2011) A survey on the prevalence of pseudotumors with metal-on-metal hip resurfacing in Canadian academic centers. J Bone Joint Surg [Am] 93(Suppl 2):118–121

    Google Scholar 

  25. Cadosch D, Chan E, Gautschi OP, Filgueira L (2009) Metal is not inert: role of metal ions released by biocorrosion in aseptic loosening – current concepts. J Biomed Mater Res A 91(4):1252–1262

    Article  PubMed  Google Scholar 

  26. Hallab NJ, Jacobs JJ (2009) Biologic effects of implant debris. Bull NYU Hosp Jt Dis 67(2):182–188

    PubMed  Google Scholar 

  27. Brown C, Williams S, Tipper JL et al (2007) Characterisation of wear particles produced by metal on metal and ceramic on metal hip prostheses under standard and microseparation simulation. J Mater Sci Mater Med 18(5):819–827

    Article  CAS  PubMed  Google Scholar 

  28. Rieker CB, Schon R, Kottig P (2004) Development and validation of a second-generation metal-on-metal bearing: laboratory studies and analysis of retrievals. J Arthroplasty 19(8 Suppl 3):5–11

    PubMed  Google Scholar 

  29. Schafer T, Bohler E, Ruhdorfer S et al (2001) Epidemiology of contact allergy in adults. Allergy 56(12):1192–1196

    Article  CAS  PubMed  Google Scholar 

  30. Schoberl A, Summer B, Jakob K et al (2004) Periimplantar cobalt-specific DTH reaction in a patch test negative patient with failure of hip arthroplasty. J Allergy Clin Immunol 113:S250–S251

    Article  Google Scholar 

  31. Thyssen JP, Linneberg A, Menne T, Johansen JD (2007) The epidemiology of contact allergy in the general population – prevalence and main findings. Contact Dermat 57(5):287–299

    Article  Google Scholar 

  32. Hallab N, Merritt K, Jacobs JJ (2001) Metal sensitivity in patients with orthopaedic implants. J Bone Joint Surg [Am] 83-A(3):428–436

  33. Willert HG, Buchhorn GH, Fayyazi A et al (2005) Metal-on-metal bearings and hypersensitivity in patients with artificial hip joints. A clinical and histomorphological study. J Bone Joint Surg [Am] 87(1):28–36

    Google Scholar 

  34. Schalock PC, Menne T, Johansen JD et al (2012) Hypersensitivity reactions to metallic implants – diagnostic algorithm and suggested patch test series for clinical use. Contact Dermat 66(1):4–19

    Article  CAS  Google Scholar 

  35. Hallab NJ, Vermes C, Messina C et al (2002) Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts. J Biomed Mater Res 60(3):420–433

    Article  CAS  PubMed  Google Scholar 

  36. Rau C, Thomas P, Thomsen M (2008) Metal sensitivity in patients with joint replacement arthroplasties before and after surgery. Orthopade 37(2):102–110

    Article  CAS  PubMed  Google Scholar 

  37. Gawkrodger DJ (1993) Nickel sensitivity and the implantation of orthopaedic prostheses. Contact Dermat 28(5):257–259

    Article  CAS  Google Scholar 

  38. Foussereau J, Laugier P (1966) Allergic eczemas from metallic foreign bodies. Trans St Johns Hosp Dermatol Soc 52(2):220–225

    CAS  PubMed  Google Scholar 

  39. Tilsley DA, Rotstein H (1980) Sensitivity caused by internal exposure to nickel, chrome and cobalt. Contact Dermat 6(3):175–178

    Article  CAS  Google Scholar 

  40. Thomas P, Braathen LR, Dorig M et al (2009) Increased metal allergy in patients with failed metal-on-metal hip arthroplasty and peri-implant T-lymphocytic inflammation. Allergy 64(8):1157–1165

    Article  CAS  PubMed  Google Scholar 

  41. Thomas P, Schuh A, Ring J, Thomsen M (2008) Orthopedic surgical implants and allergies: joint statement by the Implant Allergy Working Group (AK 20) of the DGOOC (German Association of Orthopedics and Orthopedic Surgery), DKG (German Contact Dermatitis Research Group) and DGAKI (German Society for Allergology and Clinical Immunology). Orthopade 37(1):75–88

    Article  CAS  PubMed  Google Scholar 

  42. Natu S, Sidaginamale RP, Gandhi J et al (2012) Adverse reactions to metal debris: histopathological features of periprosthetic soft tissue reactions seen in association with failed metal on metal hip arthroplasties. J Clin Pathol 65(5):409–418

    Article  PubMed  Google Scholar 

  43. Korovessis P, Petsinis G, Repanti M, Repantis T (2006) Metallosis after contemporary metal-on-metal total hip arthroplasty. Five to nine-year follow-up. J Bone Joint Surg [Am] 88(6):1183–1191

    Google Scholar 

  44. Wiley KF, Ding K, Stoner JA et al (2013) Incidence of pseudotumor and acute lymphocytic vasculitis associated lesion (ALVAL) reactions in metal-on-metal hip articulations: a meta-analysis. J Arthroplasty. doi:10.1016/j.arth.2013.03.027

  45. Kusaka Y, Yokoyama K, Sera Y et al (1986) Respiratory diseases in hard metal workers: an occupational hygiene study in a factory. Br J Ind Med 43(7):474–485

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Swennen B, Buchet JP, Stanescu D et al (1993) Epidemiological survey of workers exposed to cobalt oxides, cobalt salts, and cobalt metal. Br J Ind Med 50(9):835–842

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Gennart JP, Lauwerys R (1990) Ventilatory function of workers exposed to cobalt and diamond containing dust. Int Arch Occup Environ Health 62(4):333–336

    Article  CAS  PubMed  Google Scholar 

  48. Nemery B, Casier P, Roosels D et al (1992) Survey of cobalt exposure and respiratory health in diamond polishers. Am Rev Respir Dis 145(3):610–616

    Article  CAS  PubMed  Google Scholar 

  49. Meecham HM, Humphrey P (1991) Industrial exposure to cobalt causing optic atrophy and nerve deafness: a case report. J Neurol Neurosurg Psychiatry 54(4):374–375

    Article  CAS  PubMed  Google Scholar 

  50. Pascale LR, Waldstein SS, Engbring G et al (1952) Chromium intoxication, with special reference to hepatic injury. J Am Med Assoc 149(15):1385–1389

    Article  CAS  PubMed  Google Scholar 

  51. Kumar S, Sathwara NG, Gautam AK et al (2005) Semen quality of industrial workers occupationally exposed to chromium. J Occup Health 47(5):424–430

    Article  CAS  PubMed  Google Scholar 

  52. Li H, Chen Q, Li S et al (2001) Effect of Cr(VI) exposure on sperm quality: human and animal studies. Ann Occup Hyg 45(7):505–511

    CAS  PubMed  Google Scholar 

  53. Dooms-Goossens A, Ceuterick A, Vanmaele N, Degreef H (1980) Follow-up study of patients with contact dermatitis caused by chromates, nickel, and cobalt. Dermatologica 160(4):249–260

    Article  CAS  PubMed  Google Scholar 

  54. Shirakawa T, Kusaka Y, Fujimura N et al (1989) Occupational asthma from cobalt sensitivity in workers exposed to hard metal dust. Chest 95(1):29–37

    Article  CAS  PubMed  Google Scholar 

  55. Moller DR, Brooks SM, Bernstein DI et al (1986) Delayed anaphylactoid reaction in a worker exposed to chromium. J Allergy Clin Immunol 77(3):451–456

    Article  CAS  PubMed  Google Scholar 

  56. Bencko V (1983) Nickel: a review of its occupational and environmental toxicology. J Hyg Epidemiol Microbiol Immunol 27(2):237–247

    CAS  PubMed  Google Scholar 

  57. Rystedt I, Fischer T (1983) Relationship between nickel and cobalt sensitization in hard metal workers. Contact Dermat 9(3):195–200

    Article  CAS  Google Scholar 

  58. Horowitz SF, Fischbein A, Matza D et al (1988) Evaluation of right and left ventricular function in hard metal workers. Br J Ind Med 45(11):742–746

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Barborik M, Dusek J (1972) Cardiomyopathy accompaning industrial cobalt exposure. Br Heart J 34(1):113–116

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Jarvis JQ, Hammond E, Meier R, Robinson C (1992) Cobalt cardiomyopathy. A report of two cases from mineral assay laboratories and a review of the literature. J Occup Med 34(6):620–626

    CAS  PubMed  Google Scholar 

  61. Moulin JJ, Wild P, Haguenoer JM et al (1993) A mortality study among mild steel and stainless steel welders. Br J Ind Med 50(3):234–243

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Rosenman KD, Stanbury M (1996) Risk of lung cancer among former chromium smelter workers. Am J Ind Med 29(5):491–500

    Article  CAS  PubMed  Google Scholar 

  63. Verschoor MA, Bragt PC, Herber RF et al (1988) Renal function of chrome-plating workers and welders. Int Arch Occup Environ Health 60(1):67–70

    Article  CAS  PubMed  Google Scholar 

  64. Littorin M, Welinder H, Hultberg B (1984) Kidney function in stainless steel welders. Int Arch Occup Environ Health 53(3):279–282

    Article  CAS  PubMed  Google Scholar 

  65. Hur CI, Yoon TR, Cho SG et al (2008) Serum ion level after metal-on-metal THA in patients with renal failure. Clin Orthop Relat Res 466(3):696–699

    Article  PubMed  Google Scholar 

  66. Zywiel MG, Brandt JM, Overgaard CB et al (2013) Fatal cardiomyopathy after revision total hip replacement for fracture of a ceramic liner. Bone Joint J 95-B(1):31–37

    Google Scholar 

  67. Rizzetti MC, Liberini P, Zarattini G et al (2009) Loss of sight and sound. Could it be the hip? Lancet 373(9668):1052

    Article  PubMed  Google Scholar 

  68. Daniel J, Ziaee H, Pradhan C et al (2010) Renal clearance of cobalt in relation to the use of metal-on-metal bearings in hip arthroplasty. J Bone Joint Surg [Am] 92(4):840–845

    Google Scholar 

  69. Marker M, Grubl A, Riedl O et al (2008) Metal-on-metal hip implants: do they impair renal function in the long-term? A 10-year follow-up study. Arch Orthop Trauma Surg 128(9):915–919

    Article  PubMed  Google Scholar 

  70. Yang J, Shen B, Zhou Z et al (2011) Changes in cobalt and chromium levels after metal-on-metal hip resurfacing in young, active Chinese patients. J Arthroplasty 26(1):65–70

    Article  PubMed  Google Scholar 

  71. Corradi M, Daniel J, Ziaee H et al (2011) Early markers of nephrotoxicity in patients with metal-on-metal hip arthroplasty. Clin Orthop Relat Res 469(6):1651–1659

    Article  PubMed  Google Scholar 

  72. Hannemann F, Hartmann A, Schmitt J et al (2013) European multidisciplinary consensus statement on the use and monitoring of metal-on-metal bearings for total hip replacement and hip resurfacing. Orthop Traumatol Surg Res 99(3):263–271

    Article  CAS  PubMed  Google Scholar 

  73. Prentice JR, Clark MJ, Hoggard N et al (2013) Metal-on-metal hip prostheses and systemic health: a cross-sectional association study 8 years after implantation. PLoS One 8(6):e66186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Goldbohm RA, Tielemans EL, Heederik D et al (2006) Risk estimation for carcinogens based on epidemiological data: a structured approach, illustrated by an example on chromium. Regul Toxicol Pharmacol 44(3):294–310

    Article  CAS  PubMed  Google Scholar 

  75. Steenland K, Loomis D, Shy C, Simonsen N (1996) Review of occupational lung carcinogens. Am J Ind Med 29(5):474–490

    Article  CAS  PubMed  Google Scholar 

  76. Parry MC, Bhabra G, Sood A et al (2010) Thresholds for indirect DNA damage across cellular barriers for orthopaedic biomaterials. Biomaterials 31(16):4477–4483

    Article  CAS  PubMed  Google Scholar 

  77. Dunstan E, Ladon D, Whittingham-Jones P et al (2008) Chromosomal aberrations in the peripheral blood of patients with metal-on-metal hip bearings. J Bone Joint Surg [Am] 90(3):517–522

    Google Scholar 

  78. Ladon D, Doherty A, Newson R et al (2004) Changes in metal levels and chromosome aberrations in the peripheral blood of patients after metal-on-metal hip arthroplasty. J Arthroplasty 19(8 Suppl 3):78–83

    Article  PubMed  Google Scholar 

  79. Makela KT, Visuri T, Pulkkinen P et al (2012) Risk of cancer with metal-on-metal hip replacements: population based study. BMJ 345:e4646

    Article  PubMed Central  PubMed  Google Scholar 

  80. Visuri T, Borg H, Pulkkinen P et al (2010) A retrospective comparative study of mortality and causes of death among patients with metal-on-metal and metal-on-polyethylene total hip prostheses in primary osteoarthritis after a long-term follow-up. BMC Musculoskelet Disord 11:78

    Article  PubMed Central  PubMed  Google Scholar 

  81. Visuri T, Pukkala E, Pulkkinen P, Paavolainen P (2003) Decreased cancer risk in patients who have been operated on with total hip and knee arthroplasty for primary osteoarthrosis: a meta-analysis of 6 Nordic cohorts with 73,000 patients. Acta Orthop Scand 74(3):351–360

    Article  PubMed  Google Scholar 

  82. Wagner P, Olsson H, Lidgren L et al (2011) Increased cancer risks among arthroplasty patients: 30 year follow-up of the Swedish Knee Arthroplasty Register. Eur J Cancer 47(7):1061–1071

    Article  PubMed  Google Scholar 

  83. Brodner W, Grohs JG, Bancher-Todesca D et al (2004) Does the placenta inhibit the passage of chromium and cobalt after metal-on-metal total hip arthroplasty? J Arthroplasty 19(8 Suppl 3):102–106

    Article  PubMed  Google Scholar 

  84. Ziaee H, Daniel J, Datta AK et al (2007) Transplacental transfer of cobalt and chromium in patients with metal-on-metal hip arthroplasty: a controlled study. J Bone Joint Surg [Br] 89(3):301–305

    Google Scholar 

  85. Fritzsche J, Borisch C, Schaefer C (2012) Case report: high chromium and cobalt levels in a pregnant patient with bilateral metal-on-metal hip arthroplasties. Clin Orthop Relat Res 470(8):2325–2331

    Article  PubMed  Google Scholar 

  86. Van Der Straeten C, Grammatopoulos G, Gill HS et al (2013) The 2012 Otto Aufranc Award: the interpretation of metal ion levels in unilateral and bilateral hip resurfacing. Clin Orthop Relat Res 471(2):377–385

    Article  Google Scholar 

  87. Thomas P, Schuh A, Ring J, Thomsen M (2008) Orthopedic surgical implants and allergies: joint statement by the Implant Allergy Working Group (AK 20) of the DGOOC (German Association of Orthopedics and Orthopedic Surgery), DKG (German Contact Dermatitis Research Group) and DGAKI (German Society for Allergology and Clinical Immunology). Orthopade 37(1):75–88

    Article  CAS  PubMed  Google Scholar 

  88. Bosker BH, Ettema HB, Boomsma MF et al (2012) High incidence of pseudotumour formation after large-diameter metal-on-metal total hip replacement: a prospective cohort study. J Bone Joint Surg [Br] 94(6):755–761

    Google Scholar 

  89. Anderson H, Toms AP, Cahir JG et al (2011) Grading the severity of soft tissue changes associated with metal-on-metal hip replacements: reliability of an MR grading system. Skeletal Radiol 40(3):303–307

    Article  PubMed  Google Scholar 

  90. Hart AJ, Sabah SA, Bandi AS et al (2011) Sensitivity and specificity of blood cobalt and chromium metal ions for predicting failure of metal-on-metal hip replacement. J Bone Joint Surg [Br] 93(10):1308–1313

    Google Scholar 

  91. Tower SS (2010) Arthroprosthetic cobaltism: neurological and cardiac manifestations in two patients with metal-on-metal arthroplasty: a case report. J Bone Joint Surg [Am] 92(17):2847–2851

    Google Scholar 

  92. Ball ST, Pinsorsnak P, Amstutz HC, Schmalzried TP (2007) Extended travel after hip arthroplasty surgery. Is it safe? J Arthroplasty 22(6 Suppl 2):29–32

    Article  PubMed  Google Scholar 

  93. Freeman MA, Bradley GW (1983) ICLH surface replacement of the hip. An analysis of the first 10 years. J Bone Joint Surg [Br] 65(4):405–411

    Google Scholar 

  94. Gunther KP, Witzleb WC, Stiehler M, Kirschner S (2008) Revision surgery of hip resurfacing. Orthopade 37(7):685–694

    Article  PubMed  Google Scholar 

  95. Grammatopolous G, Pandit H, Kwon YM et al (2009) Hip resurfacings revised for inflammatory pseudotumour have a poor outcome. J Bone Joint Surg [Br] 91(8):1019–1024

    Google Scholar 

  96. Munro JT, Masri BA, Duncan CP, Garbuz DS (2013) High complication rate after revision of large-head metal-on-metal total hip arthroplasty. Clin Orthop Relat Res. doi:10.1007/s11999-013-2979-6

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. K.-P. Günther, M. Stiehler, F. Zobel, F. Hannemann, J. Schmitt, J. Lützner, S. Kirschner, A. Hartmann weisen auf folgende Beziehungen hin: Forschungsarbeiten der Orthopädischen Universitätsklinik Dresden zu Metallgleitpaarungen wurden partiell mit finanzieller Unterstützung von Implantatherstellern (Zimmer Inc., Smith & Nephew, DePuy) sowie der Deutschen Arthrose-Hilfe e. V. gefördert. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.-P. Günther.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stiehler, M., Zobel, F., Hannemann, F. et al. Komplikationen bei Metall-Metall-Gleitpaarungen. Orthopäde 43, 79–91 (2014). https://doi.org/10.1007/s00132-013-2131-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-013-2131-z

Schlüsselwörter

Keywords

Navigation