Skip to main content

Advertisement

Log in

Osteoblasten

Zelluläre und molekulare Regulationsmechanismen in der Frakturheilung

Osteoblasts

Cellular and molecular regulatory mechanisms in fracture healing

  • Leitthema
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Zusammenfassung

Das Knochengewebe besitzt eine einzigartige Fähigkeit zur Regeneration und ist in der Lage, mechanische und metabolische Stimuli in biologische Antwort umzuwandeln. Die korrekte Regulation der Osteoblastendifferenzierung während der Frakturheilung ist komplex und in ihrer Gesamtheit noch nicht verstanden. Die Transkriptionsfaktoren RUNX2 und SP7 sind von besonderer Bedeutung und können als Mastergene der Osteoblastendifferenzierung betrachtet werden. Der kanonische WNT-Signalweg spielt sowohl während des Knochenwachstums als auch in der Frakturheilung eine essenzielle Rolle für die Aktivierung der osteoblastären Differenzierungsvorgänge. Experimentelle Studien konnten nachweisen, dass eine Suppression des WNT-Signalweges während der Frakturheilung eine signifikante Reduktion der Knochenbildung zur Folge hat. Die BMP2-vermittelte Aktivierung der Osteogenese ist ebenfalls von der korrekten WNT-Signalgebung abhängig. Die Patienten mit therapierefraktären Pseudarthrosen weisen nicht nur eine reduzierte Anzahl und Differenzierungskapazität der Osteoprogenitorzellen auf, sondern zeigen auch eine signifikant reduzierte Genexpression zahlreicher Faktoren der WNT-Signalkaskade auf. Die Erforschung des WNT-Signalweges könnte neue Perspektiven in der Behandlung der Knochenbruchheilungsstörungen und für das „tissue engineering“ des Knochengewebes eröffnen.

Abstract

Bone tissue possesses a unique regeneration ability, translating mechanical and metabolic stimuli into a biological response. The perpetual regeneration processes allow continuous self-renewal and adaptation to prevailing mechanical forces. The complex regulation of osteoblastic differentiation during fracture repair has not been completely defined. Two different transcription factors – RUNX2 and SP7 – are considered to be master genes of osteoblastic differentiation. Furthermore, the canonical WNT pathway plays an essential role in the activation of osteoblastic differentiation during both bone growth and fracture healing. Studies of fracture healing have revealed that downregulation of the WNT pathway causes a significant reduction in new bone formation. Moreover, correct WNT signalling is also required for BMP2-induced bone formation. There is increasing evidence that patients who develop recalcitrant fracture nonunions exhibit not only reduced numbers and differentiation capacity of osteogenic progenitors but also a significant downregulation of numerous factors in the WNT pathway. Therefore, better understanding of the WNT regulatory mechanisms could reveal new strategies for the treatment of delayed fracture healing and for the tissue engineering of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Babij P, Zhao W, Small C et al (2003) High bone mass in mice expressing a mutant LRP5 gene. J Bone Miner Res 6:960–974

    Article  Google Scholar 

  2. Bajada S, Marshall MR, Wright KT et al (2009) Decreased osteogenesis, increased cell senescence and elevated dickkopf-1 secretion in human fracture non union stromal cells. Bone 45(4):726–735

    Article  PubMed  CAS  Google Scholar 

  3. Bruder SP, Jaiswal N, Ricalton NS et al (1998) Mesenchymal stem cells in osteobiology and applied bone regeneration. Clin Orthop Relat Res 355(Suppl):247–256

    Article  Google Scholar 

  4. Casser-Bette M, Murray AB, Closs EI et al (1990) Bone formation by osteoblast-like cells in a three-dimensional cell culture. Calcif Tissue Int 1:46–56

    Article  Google Scholar 

  5. Chen Y, Whetstone HC, Lin AC et al (2007) Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med 7:249

    Article  CAS  Google Scholar 

  6. Chen Y, Whetstone HC, Youn A et al (2007) Beta-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J Biol Chem 1:526–533

    Google Scholar 

  7. D’Souza RN, Aberg T, Gaikwad J et al (1999) Cbfa1 is required for epithelial-mesenchymal interactions regulating tooth development in mice. Development 13:2911–2920

    Google Scholar 

  8. Dahabreh Z, Dimitriou R, Giannoudis PV (2007) Health economics: a cost analysis of treatment of persistent fracture non-unions using bone morphogenetic protein-7. Injury 3:371–377

    Article  Google Scholar 

  9. Day TF, Guo X, Garrett-Beal L et al (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 5:739–750

    Article  CAS  Google Scholar 

  10. Ducy P, Amling M, Takeda S et al (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2:197–207

    Article  Google Scholar 

  11. Ducy P, Desbois C, Boyce B et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 6590:448–452

    Article  Google Scholar 

  12. Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 5484:1501–1504

    Article  Google Scholar 

  13. Ducy P, Zhang R, Geoffroy V et al (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 5:747–754

    Article  Google Scholar 

  14. el Ghouzzi V, Le MM, Perrin-Schmitt F et al (1997) Mutations of the TWIST gene in the Saethre-Chotzen syndrome. Nat Genet 1:42–46

    Google Scholar 

  15. Fischer L, Boland G, Tuan RS (2002) Wnt signaling during BMP-2 stimulation of mesenchymal chondrogenesis. J Cell Biochem 4:816–831

    Article  CAS  Google Scholar 

  16. French DM, Kaul RJ, D’Souza AL et al (2004) WISP-1 is an osteoblastic regulator expressed during skeletal development and fracture repair. Am J Pathol 3:855–867

    Google Scholar 

  17. Hadjiargyrou M, Lombardo F, Zhao S et al (2002) Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 33:30177–30182

    Article  CAS  Google Scholar 

  18. Hayda RA, Brighton CT, Esterhai JL Jr (1998) Pathophysiology of delayed healing. Clin Orthop Relat Res 355(Suppl):31–40

    Article  Google Scholar 

  19. Hens JR, Wilson KM, Dann P et al (2005) TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro. J Bone Miner Res 7:1103–1113

    Article  CAS  Google Scholar 

  20. Hernigou P, Beaujean F(1997) Bone marrow in patients with pseudarthrosis. A study of progenitor cells by in vitro cloning. Rev Chir Orthop Reparat Apparat Mot 1:33–40

    Google Scholar 

  21. Hill TP, Spater D, Taketo MM et al (2005) Canonical Wnt/beta-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 5:727–738

    Article  CAS  Google Scholar 

  22. Hofmann A, Hessmann MH, Rudig L et al (2004) Intramedullary osteosynthesis of the ulna in revision surgery. Unfallchirurg 7:583–592

    Google Scholar 

  23. Hofmann A, Ritz U, Hessmann MH et al (2008) Cell viability, osteoblast differentiation, and gene expression are altered in human osteoblasts from hypertrophic fracture non-unions. Bone 42(5):894–906

    Article  PubMed  CAS  Google Scholar 

  24. Hu H, Hilton MJ, Tu X et al (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 1:49–60

    Google Scholar 

  25. Hussein SM, Duff EK, Sirard C (2003) Smad4 and beta-catenin co-activators functionally interact with lymphoid-enhancing factor to regulate graded expression of Msx2. J Biol Chem 49:48805–48814

    Article  CAS  Google Scholar 

  26. Kakar S, Einhorn TA, Vora S et al (2007) Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res 12:1903–1912

    Article  Google Scholar 

  27. Kato M, Patel MS, Levasseur R et al (2002) Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2:303–314

    Article  Google Scholar 

  28. Kim IS, Otto F, Zabel B et al (1999) Regulation of chondrocyte differentiation by Cbfa1. Mech Dev 2:159–170

    Article  Google Scholar 

  29. Kim JB, Leucht P, Lam K et al (2007) Bone regeneration is regulated by wnt signaling. J Bone Miner Res 12:1913–1923

    Article  Google Scholar 

  30. Koga T, Matsui Y, Asagiri M et al (2005) NFAT and Osterix cooperatively regulate bone formation. Nat Med 8:880–885

    Article  CAS  Google Scholar 

  31. Komori T, Yagi H, Nomura S et al (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 5:755–764

    Article  Google Scholar 

  32. Lawton DM, Andrew JG, Marsh DR et al (1999) Expression of the gene encoding the matrix gla protein by mature osteoblasts in human fracture non-unions. Mol Pathol 2:92–96

    Article  Google Scholar 

  33. Lawton DM, Andrew JG, Marsh DR et al (1997) Mature osteoblasts in human non-union fractures express collagen type III. Mol Pathol 4:194–197

    Article  Google Scholar 

  34. Li J, Sarosi I, Cattley RC et al (2006) Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 4:754–766

    Article  CAS  Google Scholar 

  35. Little RD, Carulli JP, Del Mastro RG et al (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 1:11–19

    Article  Google Scholar 

  36. Miller SS, Wolf AM, Arnaud CD (1976) Bone cells in culture: morphologic transformation by hormones. Science 4246:1340–1343

    Article  Google Scholar 

  37. Morvan F, Boulukos K, Clement-Lacroix P et al (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 6:934–945

    Article  Google Scholar 

  38. Mundlos S, Otto F, Mundlos C et al (1997) Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell 5:773–779

    Article  Google Scholar 

  39. Nakashima K, Zhou X, Kunkel G et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 1:17–29

    Article  Google Scholar 

  40. Nishio Y, Dong Y, Paris M et al (2006) Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 10(372):62–70

    Article  CAS  Google Scholar 

  41. Otto F, Thornell AP, Crompton T et al (1997) Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 5:765–771

    Article  Google Scholar 

  42. Owen TA, Aronow M, Shalhoub V et al (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 3:420–430

    Article  Google Scholar 

  43. Reed AA, Joyner CJ, Brownlow HC et al (2002) Human atrophic fracture non-unions are not avascular. J Orthop Res 3:593–599

    Article  Google Scholar 

  44. Robinson JA, Chatterjee-Kishore M, Yaworsky PJ et al (2006) Wnt/beta-catenin signaling is a normal physiological response to mechanical loading in bone. J Biol Chem 42:31720–31728

    Article  CAS  Google Scholar 

  45. Rodda SJ, McMahon AP (2006) Distinct roles for Hedgehog and canonical Wnt signaling in specification, differentiation and maintenance of osteoblast progenitors. Development 16:3231–3244

    Article  CAS  Google Scholar 

  46. Runkel M, Rommens PM (2000) Pseudoarthrosis. Unfallchirurg 1:51–63

    Article  Google Scholar 

  47. Ruter A, Mayr E (1999) Pseudarthrosis. Chirurg 11:1239–1245

    Article  Google Scholar 

  48. Seebach C, Henrich D, Tewksbury R et al (2007) Number and proliferative capacity of human mesenchymal stem cells are modulated positively in multiple trauma patients and negatively in atrophic nonunions. Calcif Tissue Int 4:294–300

    Article  CAS  Google Scholar 

  49. Silcox DH III, Boden SD, Schimandle JH et al (1998) Reversing the inhibitory effect of nicotine on spinal fusion using an osteoinductive protein extract. Spine 3:291–296

    Article  Google Scholar 

  50. Spencer GJ, Utting JC, Etheridge SL et al (2006) Wnt signalling in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci Pt 7:1283–1296

    Article  CAS  Google Scholar 

  51. Sudmann E, Hagen T (1976) Indomethacin-induced delayed fracture healing. Arch Orthop Unfallchir 2:151–154

    Article  Google Scholar 

  52. Uchida A, Kikuchi T, Shimomura Y (1988) Osteogenic capacity of cultured human periosteal cells. Acta Orthop Scand 1:29–33

    Google Scholar 

  53. Urist MR (1965) Boneformation by autoinduction. Science 698:893–899

    Article  Google Scholar 

  54. Urist MR, Mikulski A, Conteas CN (1975) Reversible extinction of the morphogen in bone matrix by reduction and oxidation of disulfide bonds. Calcif Tissue Res 1:73–83

    Article  Google Scholar 

  55. Urist MR, Mikulski AJ, Nakagawa M et al (1977) A bone matrix calcification-initiator noncollagenous protein. Am J Physiol 3:115–127

    Google Scholar 

  56. Westendorf JJ, Kahler RA, Schroeder TM (2004) Wnt signaling in osteoblasts and bone diseases. Gene 341:19–39

    Article  PubMed  CAS  Google Scholar 

  57. Yoo JU, Johnstone B (1998) The role of osteochondral progenitor cells in fracture repair. Clin Orthop Relat Res 355(Suppl):73–81

    Article  Google Scholar 

  58. Zhong N, Gersch RP, Hadjiargyrou M (2006) Wnt signaling activation during bone regeneration and the role of Dishevelled in chondrocyte proliferation and differentiation. Bone 1:5–16

    Article  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hofmann.

Additional information

Gefördert durch Stiftung für Innovation Rheinland Pfalz (15202–38 62 61/577) und Deutsche Forschungsgesellschaft HO 4309/1–1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hofmann, A., Mattyasovszky, S., Brüning, C. et al. Osteoblasten. Orthopäde 38, 1009–1019 (2009). https://doi.org/10.1007/s00132-009-1488-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-009-1488-5

Schlüsselwörter

Keywords

Navigation