Skip to main content
Log in

Tissue Accumulation and the Effects of Long-Term Dietary Copper Contamination on Osmoregulation in the Mudflat Fiddler Crab Minuca rapax (Crustacea, Ocypodidae)

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

We examined copper accumulation in the hemolymph, gills and hepatopancreas, and hemolymph osmolality, Na+ and Cl concentrations, together with gill Na+/K+-ATPase and carbonic anhydrase activities, after dietary copper delivery (0, 100 or 500 Cu µg g−1) for 12 days in a fiddler crab, Minuca rapax. In contaminated crabs, copper concentration decreased in the hemolymph and hepatopancreas, but increased in the gills. Hemolymph osmolality and gill Na+/K+-ATPase activity increased while hemolymph [Na+] and [Cl] and gill carbonic anhydrase activity decreased. Excretion likely accounts for the decreased hemolymph and hepatopancreas copper titers. Dietary copper clearly affected osmoregulatory ability and hemolymph Na+ and Cl regulation in M. rapax. Gill copper accumulation decreased carbonic anhydrase activity, suggesting that dietary copper affects acid–base balance. Elevated gill Na+/K+-ATPase activity appears to compensate for the ion-regulatory disturbance. These effects of dietary copper illustrate likely impacts on semi-terrestrial species that feed on metal-contaminated sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahearn GA, Mandal PK, Mandal A (2004) Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review. J Comp Physiol B 174(6):439–452

    CAS  Google Scholar 

  • Arnold WR (2005) Effects of dissolved organic carbon on copper toxicity: implications for saltwater copper criteria. Integ Environ Assess Manage 1(1):34–39

    CAS  Google Scholar 

  • Bianchini A, Wood CM (2003) Mechanism of acute silver toxicity in Daphnia magna. Environ Toxicol Chemy 22(6):1361–1367

    CAS  Google Scholar 

  • Bianchini A, Lauer MM, Nery LEM, Colares EP, Monserrat JM, dos Santos Filho EA (2008) Biochemical and physiological adaptations in the estuarine crab Neohelice granulata during salinity acclimation. Comp Biochem Physiol A 151(3):423–436

    Google Scholar 

  • Bielmyer GK, Grosell M, Brix KV (2006) Toxicity of silver, zinc, copper, and nickel to the copepod Acartia tonsa exposed via a phytoplankton diet. Environ Sci Technol 40(6):2063–2068

    CAS  Google Scholar 

  • Blanchard J, Grosell M (2006) Copper toxicity across salinities from freshwater to seawater in the euryhaline fish Fundulus heteroclitus: is copper an ionoregulatory toxicant in high salinities? Aquat Toxicol 80(2):131–139

    CAS  Google Scholar 

  • Bordon IC, de Campos BG, Gusso-Choueri PK, Miyai CA, de Araujo GS, Emerenciano AK, de Souza Abessa DM (2019) Improvements in metal exposure assays: artificial food to assess bioaccumulation in the blue crab Callinectes danae Smith, 1869 (Crustacea, Decapoda, Portunidae). Int J Environ Res 13(2):431–434

    CAS  Google Scholar 

  • Bordon IC et al (2018) Implications on the Pb bioaccumulation and metallothionein levels due to dietary and waterborne exposures: the Callinectes danae case. Ecotoxicol Environ Saf 162:415–422

    CAS  Google Scholar 

  • Borgmann U, Couillard Y, Doyle P, Dixon DG (2005) Toxicity of sixty-three metals and metalloids to Hyalella azteca at two levels of water hardness. Environ Toxicol Chem 24(3):641–652

    CAS  Google Scholar 

  • Böttcher K, Siebers D (1993) Biochemistry, localization, and physiology of carbonic anhydrase in the gills of euryhaline crabs. J Exp Zool 265(4):397–409

    Google Scholar 

  • Böttcher K, Siebers D, Becker W, Petrausch G (1991) Physiological role of branchial carbonic anhydrase in the shore crab Carcinus maenas. Mar Biol 110:337–342

    Google Scholar 

  • Brooks SJ, Mills CL (2003) The effect of copper on osmoregulation in the freshwater amphipod Gammarus pulex. Comp Biochem Physiol A 135(4):527–537

    Google Scholar 

  • Burggren WW, McMahon BR (eds) (1988) Biology of the land crabs. Cambridge University Press, Cambridge

    Google Scholar 

  • Capparelli MV, Abessa DM, McNamara JC (2016) Effects of metal contamination in situ on osmoregulation and oxygen consumption in the mudflat fiddler crab Uca rapax (Ocypodidae, Brachyura). Comp Biochem Physiol C 185:102–111

    Google Scholar 

  • Capparelli MV, Gusso-Choueri PK, de Souza Abessa DM, McNamara JC (2019) Seasonal environmental parameters influence biochemical responses of the fiddler crab Minuca rapax to contamination in situ. Comp Biochem Physiol C 216:93–100

    CAS  Google Scholar 

  • Capparelli MV, McNamara JC, Grosell M (2017) Effects of waterborne copper delivered under two different exposure and salinity regimes on osmotic and ionic regulation in the mudflat fiddler crab, Minuca rapax (Ocypodidae, Brachyura). Ecotoxicol Environ Saf 143:201–209

    CAS  Google Scholar 

  • Chapman PM, Wang F (2001) Assessing sediment contamination in estuaries. Environ Toxicol Chem 20:3–22

    CAS  Google Scholar 

  • Christy JH (1978) Adaptive significance of reproductive cycles in the fiddler crab Uca pugilator: a hypothesis. Science 199(4327):453–455

    CAS  Google Scholar 

  • Crane J (2015) Fiddler crabs of the world: Ocypodidae: genus Uca. Princeton University Press, Princeton

    Google Scholar 

  • De Schamphelaere KAC, Forrez I, Dierckens K, Sorgeloos P, Janssen CR (2007) Chronic toxicity of dietary copper to Daphnia magna. Aquat Toxicol 81(4):409–418

    Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20(10):2383–2396

    Google Scholar 

  • Furriel RDPM, McNamara JC, Leone FDA (2001) Nitrophenylphosphate as a tool to characterize gill Na+, K+-ATPase activity in hyperregulating Crustacea. Comp Biochem Physiol A 130(4):665–676

    CAS  Google Scholar 

  • Genz J, Esbaugh AJ, Grosell M (2011) Intestinal transport following transfer to increased salinity in an anadromous fish (Oncorhynchus mykiss). Comp Biochem Physiol A 159(2):150–158

    Google Scholar 

  • Grosell M, Blanchard J, Brix KV, Gerdes R (2007) Physiology is pivotal for interactions between salinity and acute copper toxicity to fish and invertebrates. Aquat Toxicol 84(2):162–172

    CAS  Google Scholar 

  • Grosell M, Nielsen C, Bianchini A (2002) Sodium turnover rate determines sensitivity to acute copper and silver exposure in freshwater animals. Comp Biochem Physiol C 133(1–2):287–303

    Google Scholar 

  • Hagopian-Schlekat T, Chandler GT, Shaw TJ (2001) Acute toxicity of five sediment-associated metals, individually and in a mixture, to the estuarine meiobenthic harpacticoid copepod Amphiascus tenuiremis. Mar Environ Res 51(3):247–264

    CAS  Google Scholar 

  • Handy RD (1996) Dietary exposure to toxic metals in fish. In Seminar series-society for experimental biology. vol. 57, Cambridge University Press, Cambridge, pp. 29–60

    Google Scholar 

  • Handy RD (2003) Chronic effects of copper exposure versus endocrine toxicity: two sides of the same toxicological process? Comp Biochem Physiol A 135(1):25–38

    Google Scholar 

  • Handy RD, Eddy FB, Baines H (2002) Sodium-dependent copper uptake across epithelia: a review of rationale with experimental evidence from gill and intestine. Biochim Biophys Acta 1566:104–115

    CAS  Google Scholar 

  • Henry RP (1991) Techniques for measuring carbonic anhydrase activity in vitro. In The carbonic anhydrases (pp. 119–125). Springer, Boston

    Google Scholar 

  • Henry RP, Lucu C, Onken H, Weihrauch D (2012) Multiple functions of the crustacean gill: osmotic/ionic regulation, acid-base balance, ammonia excretion, and bioaccumulation of toxic metals. Front Physiol 3:431

    CAS  Google Scholar 

  • Hoyle I, Shaw BJ, Handy RD (2007) Dietary copper exposure in the African Walking Catfish, Clarias gariepinus: transient osmoregulatory disturbances and oxidative stress. Aquat Toxicol 83:62–72

    CAS  Google Scholar 

  • Kamunde CN, Grosell M, Lott JN, Wood CM (2001) Copper metabolism and gut morphology in rainbow trout (Oncorhynchus mykiss) during chronic sublethal dietary copper exposure. Can J Fish Aquat Sci 58(2):293–305

    CAS  Google Scholar 

  • Kjoss VA, Kamunde CN, Niyogi S, Grosell M, Wood CM (2005) Dietary Na does not reduce dietary Cu uptake by juvenile rainbow trout. J Fish Biol 66(2):468–484

    CAS  Google Scholar 

  • Kooijman SA (2000) Dynamic energy and mass budgets in biological systems, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kristensen E (2008) Mangrove crabs as ecosystem engineers; with emphasis on sediment processes. J Sea Res 59(1–2):30–43

    Google Scholar 

  • Lauer MM, Bianchini A (2010) Chronic copper toxicity in the estuarine copepod Acartia tonsa at different salinities. Environ Toxicol Chem 29(10):2297–2303

    CAS  Google Scholar 

  • MacRae RK, Smith DE, Swoboda-Colberg N, Meyer JS, Bergman HL (1999) Copper binding affinity of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) gills: implications for assessing bioavailable metal. Environ Toxicol Chem 18:1180–1189

    CAS  Google Scholar 

  • Martins CM, Menezes EJ, Giacomin MM, Wood CM, Bianchini A (2011) Toxicity and tissue distribution and accumulation of copper in the blue crab Callinectes sapidus acclimated to different salinities: in vivo and in vitro studies. Aquat Toxicol 101:88–99

    Google Scholar 

  • Nassiri Y, Rainbow PS, Amiard-Triquet C, Rainglet F, Smith BD (2000) Trace-metal detoxification in the ventral caeca of Orchestia gammarellus (Crustacea: Amphipoda). Mar Biol 136(3):477–484

    CAS  Google Scholar 

  • Nogueira AJA, Baird DJ, & Soares AMVM (2004). Testing physiologically-based resource allocation rules in laboratory experiments with Daphnia magna Straus. In Annales De Limnologie-International Journal of Limnology (vol 40(4), pp. 257–267. EDP Sciences.

  • Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PG, Gensemer RW (2002) The biotic ligand model: a historical overview. Comp Biochem Physiol C 133(1–2):3–35

    Google Scholar 

  • Pequeux A (1995) Osmotic regulation in crustaceans. J Crustac Biol 15(1):1–60

    Google Scholar 

  • Postel U, Petrausch G, Riestenpatt S, Weihrauch D, Malykh J, Becker W, Siebers D (1998) Inhibition of Na+/K+-ATPase and of active ion-transport functions in the gills of the shore crab Carcinus maenas induced by cadmium. Mar Biol 130(3):407–416

    CAS  Google Scholar 

  • Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Pollut 120(3):497–507

    CAS  Google Scholar 

  • Rainbow PS (2007) Trace metal bioaccumulation: models, metabolic availability and toxicity. Environ Int 33(4):576–582

    CAS  Google Scholar 

  • Rainer J, Brouwer M (1993) Hemocyanin synthesis in the blue crab Callinectes sapidus. Comparat Biochem Physiol Part B 104(1):69–73

    CAS  Google Scholar 

  • Roast SD, Rainbow PS, Smith BD, Nimmo M, Jones MB (2002) Trace metal uptake by the Chinese mitten crab Eriocheir sinensis: the role of osmoregulation. Mar Environ Res 53(5):453–464

    CAS  Google Scholar 

  • Rtal A, Truchot JP (1996) Carcinus maenas. Mar Pollut Bull 32(11):802–811

    CAS  Google Scholar 

  • Sá MG, Zanotto FP (2008) Dietary copper absorption and excretion in three semi-terrestrial grapsoid crabs with different levels of terrestrial adaptation. Comparat Biochem Physiol Part C 148:112–116

    Google Scholar 

  • Sabatini SE, Chaufan G, Juárez ÁB, Coalova I, Bianchi L, Eppis MR, de Molina MDCR (2009) Dietary copper effects in the estuarine crab, Neohelice (Chasmagnathus) granulata, maintained at two different salinities. Comp Biochem Physiol C 150(4):521–527

    Google Scholar 

  • Shaw BJ, Handy RD (2006) Oreochromis niloticus. Aquat Toxicol 76(2):111–121

    CAS  Google Scholar 

  • Thurman CL, Faria SC, McNamara JC (2013) The distribution of fiddler crabs (Uca) along the coast of Brazil: implications for biogeography of the western Atlantic Ocean. Mar Biodivers Records 6:1

    Google Scholar 

  • Thurman CL, Faria SC, McNamara JC (2017) Geographical variation in osmoregulatory abilities among populations of ten species of fiddler crabs from the Atlantic coast of Brazil: a macrophysiological analysis. J Exp Mar Biol Ecol 497:243–253

    Google Scholar 

  • Viarengo A, Nott JA (1993) Mechanisms of heavy metal cation homeostasis in marine invertebrates. Comparat Biochem Physiol Part C 104(3):355–372

    Google Scholar 

  • Vitale AM, Monserrat JM, Castilho P, Rodriguez EM (1999) Inhibitory effects of cadmium on carbonic anhydrase activity and ionic regulation of the estuarine crab Chasmagnathus granulata (Decapoda, Grapsidae). Comp Biochem Physiol C 122(1):121–129

    CAS  Google Scholar 

  • Vogt G, Quinitio ET (1994) Accumulation and excretion of metal granules in the prawn, Penaeus monodon, exposed to water-borne copper, lead, iron and calcium. Aquat Toxicol 28(3–4):223–241

    CAS  Google Scholar 

  • Wang T, Knudsen PK, Brauner CJ, Busk M, Vijayan MM, Jensen FB (1998) Copper exposure impairs intra-and extracellular acid-base regulation during hypercapnia in the fresh water rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 168(8):591–599

    CAS  Google Scholar 

  • Wang WX, Fisher NS (1999) Delineating metal accumulation pathways for marine invertebrates. Sci Total Environ 237:459–472

    Google Scholar 

  • Weeks JM, Jensen FB, Depledge MH (1993) Acid-base status, haemolymph composition and tissue copper accumulation in the shore crab Carcinus maenas exposed to combined copper and salinity stress. Mar Ecol Progress Ser Oldendorf 97(1):91–98

    CAS  Google Scholar 

  • Wright DA, Welbourn PM (1993) Effects of mercury exposure on ionic regulation in the crayfish Orconectes propinquus. Environ Pollut 82(2):139–142

    CAS  Google Scholar 

Download references

Acknowledgements

This investigation was financed by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2011/22537-0 to JCM) from which MVC received doctoral scholarships (2011/08065-9 and 2013/10672-6). JCM received excellence in research scholarships from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 300662/2009-2, 303613/2017-3). MG is a Maytag Chair of Ichthyology. This study is part of a doctoral dissertation by MVC (Comparative Biology, FFCLRP/USP) and received support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, 33002029031P8, finance code 001 to JCM and MVC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Capparelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capparelli, M.V., McNamara, J.C. & Grosell, M.G. Tissue Accumulation and the Effects of Long-Term Dietary Copper Contamination on Osmoregulation in the Mudflat Fiddler Crab Minuca rapax (Crustacea, Ocypodidae). Bull Environ Contam Toxicol 104, 755–762 (2020). https://doi.org/10.1007/s00128-020-02872-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-020-02872-3

Keywords

Navigation