Skip to main content

Evaluation of the Sensitivity of Freshwater Organisms Used in Toxicity Tests of Wastewater from Explosives Company


Explosives industries are a source of toxic discharge. The aim of this study was to compare organisms sensitivity (Daphnia similis, Danio rerio, Escherichia coli and Pseudomonas putida) in detecting acute toxicity in wastewater from two explosives, 2,4,6-TNT (TNT) and nitrocellulose. The samples were collected from an explosives company in the Paraiba Valley, São Paulo, Brazil. The effluents from TNT and nitrocellulose production were very toxic for tested organisms. Statistical tests indicated that D. similis and D. rerio were the most sensitive organisms for toxicity detection in effluents from 2,4,6-TNT and nitrocellulose production. The P. putida bacteria was the organism considered the least sensitive in indicating toxicity in effluents from nitrocellulose.

This is a preview of subscription content, access via your institution.


  1. ABNT Brazilian Association of Technical Standardization (2004) NBR 12713: ecotoxicologia aquática—toxicidade aguda—método de ensaio com Daphnia spp (Cladocera, Crustacea), Rio de Janeiro

  2. ABNT Brazilian Association of Technical Standardization (2006) NBR 15088: Ecotoxicologia aquática—toxicidade aguda—método de ensaio com peixes, Rio de Janeiro

  3. Ali M, Sreekrishanan TR (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res 5(2):175–196

    Article  CAS  Google Scholar 

  4. American Public Health Association APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, Washington

    Google Scholar 

  5. Barreto-Rodrigues M, Silva FT, Paiva TCB (2009) Characterization of wastewater from the Brazilian TNT industry. J Hazard Mater. doi:10.1016/j.jhazmat.2008.07.152

  6. Barros Neto B, Scarminio IS, Bruns RE (2007) Como fazer experimentos. Editora Unicamp, Campinas

    Google Scholar 

  7. CONAMA—National Council of Environment (2005) Resolution no 357. Ministry of Environment, Brasília, p 58

  8. CONAMA—National Council of Environment (2011) Resolution no 430. Ministry of Environment, Brasília, p 8

  9. CPPA Canadian Pulp and Paper Association (1975) Technical section standard method H5P. Canadian Pulp and Paper Association, Canada

    Google Scholar 

  10. Gellert G (2000) Relationship between summarizing chemical parameters like AOX, TOC, TNb, and toxicity tests for effluents from the chemical production. Bull Environ Contam Toxicol. doi:10.1007/s001280000153

  11. Hamilton MA, Russo R, Thurston RV (1977) Trimmed Spearman-Karber method for estimating lethal concentrations in toxicity bioassays. Environ Sci Technol 11(7):714–718

    Article  CAS  Google Scholar 

  12. Lewis TA, Newcombe DA, Crawford RL (2004) Bioremediation of soils contaminated with explosives. J Environ Manage 70(4):291–307

    Article  Google Scholar 

  13. Martins J, Teles LO, Vasconcelos V (2007) Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology. Environ Int. doi:10.1016/j.envint.2006.12.006

  14. Nipper M, Carr RS, Lotufo GR (2009) Introduction. In: Sunahara GI, Lotufo G, Kuperman RG, Hawari J (eds) Ecotoxicology of explosives. CRC Press, Boca Raton, Cap. 4. p. 77-115

  15. Ronco A, Baéz MCD, Granados YP (2004) Conceptos generales. In: Castillo G (ed) Ensayos toxicológicos y métodos de evaluación de calidad de águas. IDRC/IMTA, Canadá

    Google Scholar 

  16. Ryon GM, Pal CB, Talmage SS, Ross RH (1984) Database assessment of the health and environmental effects of munition production waste products, AD ORNL-6179. Oak Ridge National Laboratory, Fort Frederick, Frederick, p 82

  17. Santos LF (2006) Characterization and treatment of effluents from nitrocellulose manufacturing. Thesis

  18. Slabbert JL (1986) Improved bacterial growth test for rapid water toxicity screening. Bull Environ Contam Toxicol 37:565–569

    Article  CAS  Google Scholar 

  19. Slabbert JL, Venter EA (1999) Biological assays for aquatic toxicity testing. Water Sci Technol 39(10–11):367–373

    CAS  Google Scholar 

  20. Stucki H (2004) Toxicity and degradation of explosives. Chimia 58(6):409–413

    Article  CAS  Google Scholar 

  21. Tadros MG, Crawford A, Mateo-Sullivan A, Zhang C, Hughes JB (2000) Toxic effects of hidroxylamino intermediates from microbial transformation of trinitrotoluene and dinitrotoluenes on algae Selenastrum capricornutum. Bull Environ Contam Toxicol 64(4):579–585

    Article  CAS  Google Scholar 

  22. Talmage SS, Opresko DM, Maxwell CJ, Welsh CJE, Cretella FM, Reno PH, Daniel FB (1999) Nitroaromatic munition compounds: environmental effects and screening values. Rev Environ Contam Toxicol 161:1–156

    CAS  Google Scholar 

  23. USEPA United States Environmental Protection Agency (1985) Methods for measuring the acute toxicity of effluents to freshwater and marine organisms. EPA/600/4-85/013

  24. Zhang M, Zhao Q, Ye Z (2011) Organic pollutants removal from 2, 4, 6-trinitrotoluene (TNT) red water using low cost activated coke. J Environ Sci 23(12):1962–1969

    CAS  Google Scholar 

Download references


The authors thank CNPq (National Council of Scientific and Technological Development), ANA (Brazilian Agency of Water—for financial support) and Mrs. Lúcia A. B. A. Castro for technical support.

Author information



Corresponding author

Correspondence to Elaine Nolasco Ribeiro.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ribeiro, E.N., da Silva, F.T. & de Paiva, T.C.B. Evaluation of the Sensitivity of Freshwater Organisms Used in Toxicity Tests of Wastewater from Explosives Company. Bull Environ Contam Toxicol 89, 915–920 (2012).

Download citation


  • Explosives
  • Freshwater organisms
  • Sensitivity
  • Toxicity