Skip to main content
Log in

Gene-environment interaction research in psychiatric epidemiology: a framework and implications for study design

  • Commentary
  • Published:
Social Psychiatry and Psychiatric Epidemiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Duncan LE, Keller MC (2011) A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am J Psychiatry 168:1041–1049

    Article  PubMed  PubMed Central  Google Scholar 

  2. Caspi A, Hariri AR, Holmes A, Uher R, Moffitt TE (2010) Genetic sensitivity to the environment: the case of the serotonin transporter gene and its implications for studying complex diseases and traits. Am J Psychiatry 167:509–527

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dick DM (2011) Gene-environment interaction in psychological traits and disorders. Annu Rev Clin Psychol 7:383–409

    Article  PubMed  PubMed Central  Google Scholar 

  4. Boardman JD, Domingue BW, Blalock CL, Haberstick BC, Harris KM, McQueen MB (2013) Is the gene-environment interaction paradigm relevant to genome-wide tudies? the case of education and body mass index. Demography 51(1):119–139

    Article  Google Scholar 

  5. El-Sayed AM, Koenen KC, Galea S (2013) Rethinking our public health genetics research paradigm. Am J Public Health 103:S14–S18

    Article  PubMed  PubMed Central  Google Scholar 

  6. Uher R (2014) Gene-environment interactions in common mental disorders: an update and strategy for a genome-wide search. Soc Psychiatry Psychiatr Epidemiol 49(1):3–14

    Article  PubMed  Google Scholar 

  7. Hariri AR (2009) The neurobiology of individual differences in complex behavioral traits. Annu Rev Neurosci 32:225–247

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Nikolova YS, Ferrell RE, Manuck SB, Hariri AR (2011) Multilocus genetic profile for dopamine signaling predicts ventral striatum reactivity. Neuropsychopharmacology 36:1940–1947

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Caspi A, Moffitt TE (2006) Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci 7:583–590

    Article  PubMed  CAS  Google Scholar 

  10. Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 109:1193–1198

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Gibson G (2011) Rare and common variants: twenty arguments. Nat Rev Genet 13:135–145

    Article  Google Scholar 

  12. Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era–concepts and misconceptions. Nat Rev Genet 9:255–266

    Article  PubMed  CAS  Google Scholar 

  13. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Murcray CE, Lewinger JP, Gauderman WJ (2009) Gene-environment interaction in genome-wide association studies. Am J Epidemiol 169:219–226

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cornelis MC, Tchetgen EJT, Liang L, Qi L, Chatterjee N, Hu FB et al (2012) Gene-environment interactions in genome-wide association studies: a comparative study of tests applied to empirical studies of type 2 diabetes. Am J Epidemiol 175:191–202

    Article  PubMed  PubMed Central  Google Scholar 

  16. Manuck SB, McCaffery JM (2014) Gene-environment interaction. Annu Rev Psychol 65:41–70

    Article  PubMed  Google Scholar 

  17. Khoury MJ, Wacholder S (2009) Invited commentary: from genome-wide association studies to gene-environment-wide interaction studies—challenges and opportunities. Am J Epidemiol 169:227–230

    Article  PubMed  PubMed Central  Google Scholar 

  18. Visscher PM, Goddard ME, Derks EM, Wray NR (2012) Evidence-based psychiatric genetics, aka the false dichotomy between common and rare variant hypotheses. Mol Psychiatry 17:474–485

    Article  PubMed  CAS  Google Scholar 

  19. Sullivan PF, Daly MJ, O’Donovan M (2012) Genetic architectures of psychiatric disorders: the emerging picture and its implications. Nat Rev Genet 13:537–551

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF et al (2009) Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752

    PubMed  CAS  Google Scholar 

  21. Wray NR, Goddard ME, Visscher PM (2007) Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res 17:1520–1528

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Plomin R, Haworth CM, Davis OS (2009) Common disorders are quantitative traits. Nat Rev Genet 10:872–878

    Article  PubMed  CAS  Google Scholar 

  23. Dudbridge F (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genet 9:e1003348

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Stice E, Yokum S, Burger K, Epstein L, Smolen A (2012) Multilocus genetic composite reflecting dopamine signaling capacity predicts reward circuitry responsivity. J Neurosci 32:10093–10100

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. McIntosh AM, Gow A, Luciano M, Davies G, Liewald DC, Harris SE et al (2013) Polygenic risk for schizophrenia is associated with cognitive change between childhood and old age. Biol Psychiatry 73(10):938–943

    Article  PubMed  Google Scholar 

  26. Lencz T, Knowles E, Davies G, Guha S, Liewald DC, Starr JM et al (2014) Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: a report from the cognitive genomics consortium (COGENT). Mol Psychiatry 19:168–174

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium, Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM et al (2013) A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry 18:497–511

    Article  PubMed  CAS  Google Scholar 

  28. Smoller JW, Craddock N, Kendler K, Lee PH, Neale BM, Nurnberger JI et al (2013) Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381:1371–1379

    Article  CAS  Google Scholar 

  29. Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014) Biological insights from 108 schizophrenia-associated genetic loci. Nature 511(7510):421–527

  30. Li S, Zhao JH, Luan J, Ekelund U, Luben RN, Khaw KT et al (2010) Physical activity attenuates the genetic predisposition to obesity in 20,000 men and women from EPIC-Norfolk prospective population study. PLoS Med 7:1–9

    Article  Google Scholar 

  31. Qi Q, Chu AY, Kang JH, Jensen MK, Curhan GC, Pasquale LR et al (2012) Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med 367:1387–1396

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Meyers JL, Cerdá M, Galea S, Keyes KM, Aiello AE, Uddin M et al (2013) Interaction between polygenic risk for cigarette use and environmental exposures in the detroit neighborhood health study. Transl Psychiatry 3:e290

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Belsky DW, Moffitt TE, Caspi A (2013) Genetics in population health science: strategies and opportunities. Am J Public Health 103(Suppl 1):S73–S83

    Article  PubMed  PubMed Central  Google Scholar 

  34. Peyrot WJ, Milaneschi Y, Abdellaoui A, Sullivan PF, Hottenga JJ, Boomsma DI et al (2014) Effect of polygenic risk scores on depression in childhood trauma. Br J Psychiatry 205:113–119

    Article  Google Scholar 

  35. Belsky DW, Moffitt TE, Houts R, Bennett GG, Biddle AK, Blumenthal JA et al (2012) Polygenic risk, rapid childhood growth, and the development of obesity: evidence from a 4-decade longitudinal study. Arch Pediatr Adolesc Med 166:515–521

    Article  PubMed  PubMed Central  Google Scholar 

  36. Belsky DW, Moffitt TE, Baker TB, Biddle AK, Evans JP, Harrington H et al (2013) Polygenic risk and the developmental progression to heavy, persistent smoking and nicotine dependence: evidence from a 4-decade longitudinal study. JAMA Psychiatry 70:534–542

    Article  PubMed  PubMed Central  Google Scholar 

  37. The ENCODE Consortium (2011) A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol 9:e1001046

  38. Vandenbergh DJ, Schlomer GL (2014) Finding genomic function for genetic associations in nicotine addiction research: the encode project’s role in future pharmacogenomic analysis. Pharmacol Biochem Behav 123:34–44

    Article  PubMed  CAS  Google Scholar 

  39. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Murphy DL, Li Q, Engel S, Wichems C, Andrews A, Lesch KP et al (2001) Genetic perspectives on the serotonin transporter. Brain Res Bull 56:487–494

    Article  PubMed  CAS  Google Scholar 

  41. Heils A, Teufel A, Petri S, Seemann M, Bengel D, Balling U et al (1995) Functional promoter and polyadenylation site mapping of the human serotonin (5-HT) transporter gene. J Neural Transm Gen Sect 102:247–254

    Article  PubMed  CAS  Google Scholar 

  42. Heils A, Teufel A, Petri S, Stöber G, Riederer P, Bengel D et al (1996) Allelic variation of human serotonin transporter gene expression. J Neurochem 66:2621–2624

    Article  PubMed  CAS  Google Scholar 

  43. Bennett AJ, Lesch KP, Heils A, Long JC, Lorenz JG, Shoaf SE et al (2002) Early experience and serotonin transporter gene variation interact to influence primate CNS function. Mol Psychiatry 7:118–122

    Article  PubMed  CAS  Google Scholar 

  44. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D et al (2002) Serotonin transporter genetic variation and the response of the human amygdala. Science 297:400–403

    Article  PubMed  CAS  Google Scholar 

  45. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H et al (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  PubMed  CAS  Google Scholar 

  46. Demirkan A, Penninx BW, Hek K, Wray NR, Amin N, Aulchenko YS et al (2011) Genetic risk profiles for depression and anxiety in adult and elderly cohorts. Mol Psychiatry 16:773–783

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Lubke GH, Hottenga JJ, Walters R, Laurin C, de Geus EJC, Willemsen G et al (2012) Estimating the genetic variance of major depressive disorder due to all single nucleotide polymorphisms. Biol Psychiatry 72:707–709

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

DWB is supported by grants from the US National Institute on Aging T32-AG00029, P30 AG028716-08. SI received support from National Institute of Child Health & Human Development Grants HD061298 and HD077482, National Institute on Aging Grant AG032282, and the Jacobs Foundation and is grateful to the Yad Hanadiv Rothschild Foundation for the award of a Rothschild Fellowship.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel W. Belsky.

Appendix: Box 1. Examples of Type 1 and Type 2 GxE questions: the case of depression

Appendix: Box 1. Examples of Type 1 and Type 2 GxE questions: the case of depression

Type 1 GxE question example. Environmental stress exposure is a risk factor for depression, but the mechanism through which stress causes depression is unknown. Altered serotonergic signaling in brain is hypothesized as a mechanism through which stress causes depression, but this hypothesis is difficult to test experimentally in humans. The gene encoding the serotonin transporter (5HTT) contributes to the regulation of stress response in rodents [40]. A length polymorphism in that gene (5HTT-LPR) modifies its function [41, 42] and is associated with stress-dependent concentrations of serotonin in the cerebrospinal fluid of rhesus macaques [43] and with threat-related reactivity of the amygdala in humans [44]. On the basis of this evidence, one foundational GxE study used 5HTT-LPR as an instrument to measure individual differences in a difficult to observe biological substrate, serotonergic signaling in brain in response to stress [45]. The GxE analysis examined the interaction of stressful live events with 5HTT-LPR in predicting depression. Framed as a Type 1 GxE question, that analysis tested the hypothesis that environmental stress contributes to the pathogenesis of depression via effects on serotonergic signaling in brain.

Type 2 GxE question example. Depression is known to be heritable. But not all individuals genetically predisposed to depression manifest illness. Environmental exposures are hypothesized to modify the effect of a genetic liability on depression. Although GWAS of depression have not detected replicable associations at the level of individual SNPs, results from GWAS and from genome-wide complex trait analysis indicate substantial and highly polygenic genetic influence on depression [27, 46, 47]. On the basis of this evidence, a recent GxE analysis examined whether genetic liability to depression (as measured by a GWAS-derived polygenic score) was modified by exposure to stressful life events [34]. Framed as a Type 2 GxE question, that analysis tested the hypothesis that genetically vulnerable individuals may be especially likely to develop depression when exposed to stress.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belsky, D.W., Suppli, N.P. & Israel, S. Gene-environment interaction research in psychiatric epidemiology: a framework and implications for study design. Soc Psychiatry Psychiatr Epidemiol 49, 1525–1529 (2014). https://doi.org/10.1007/s00127-014-0954-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00127-014-0954-5

Keywords

Navigation