Skip to main content
Log in

Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn basin area, Yukon

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Selwyn basin area strata contain sedimentary pyrite with Au above background levels when analyzed by laser ablation-inductively coupled mass spectrometry. Hyland Group rocks contain framboidal pyrite contents of 670 ppb Au, 1223 ppm As, and 5.3 ppm Te; the mean of all types of sedimentary pyrite in the Hyland Group is 391 ppb Au, 1489 ppm As, and 3.8 ppm Te. These levels are similar to sedimentary pyrite in host lithologies from major orogenic gold districts in New Zealand and Australia. Comparison of whole rock and pyrite data show that rocks deposited in continental slope settings with significant terrigenous input contain pyrite that is consistently enriched in Au, As, Te, Co, and Cu. Although data are limited, whole rock samples of stratigraphic units containing Au-rich pyrite also contain high Au, indicating that most of the Au is within sedimentary pyrite. Based on geologic characteristics and comparison of pyrite chemistry data with whole rock chemistry, Selwyn basin area strata have the necessary ingredients to form orogenic gold deposits: Au-enriched source rocks, metamorphic conditions permissive of forming a metamorphic ore fluid, and abundant structural preparation for channeling fluids and depositing ore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbott JG (1997) Geology of the Upper Hart River area, eastern Ogilvie Mountains, Yukon Territory (116A/10, 116A/11). Bulletin 9. Exploration and Geological Services Division, Yukon Region, pp 100

  • Abbott JG (2012) Bedrock geology of the Macmillan Pass area Yukon and adjacent Northwest Territories (NTS 105O/1,2 and parts of 105O/7,8 and 105P/4,5). Yukon Geological Survey

  • Baker T, Mustard R, Brown V, Pearson N, Stanley CR, Radford NW, Butler I (2006) Textural and chemical zonation of pyrite at Pajingo: a potential vector to epithermal gold veins. Geochem: Explor Environ Anal 6(4):283–293. https://doi.org/10.1144/1467-7873/05-077

    Google Scholar 

  • Beaudoin G, Sangster DF (1992) A descriptive model for silver-lead-zinc veins in clastic metasedimentary terranes. Econ Geol 87(4):1005–1021. https://doi.org/10.2113/gsecongeo.87.4.1005

    Article  Google Scholar 

  • Canfield DE, Poulton SW, Knoll AH, Narbonne GM, Ross G, Goldberg T, Strauss H (2008) Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry. Science 321:949-952. https://doi.org/10.1126/science.1154499

  • Cecile MP (2000) Geology of the northeastern Niddery Lake map area, east-central Yukon and adjacent Northwest Territories. Geol Surv Can Bull 553:128

    Google Scholar 

  • Cohen KM, Finney SC, Gibbard SC, Fan J-X (2013; updated) The ICS international chronostratagraphic chart. Episodes 36:199–204

  • Colpron M, Nelson JL (2011) A digital atlas of terranes for the northern Cordillera. Yukon Geological Survey, <http://www.geology.gov.yk.ca/bedrock_terrane.html> [accessed June 2017]; also BC Geological Survey, GeoFile 2011–11

  • Cook FA (1992) Racklan Orogen. Can J Earth Sci 29(11):2490–2496. https://doi.org/10.1139/e92-195

    Article  Google Scholar 

  • Craw D, Mortensen J, Mackenzie D, Pitcairn IK (2015) Contrasting geochemistry of orogenic gold deposits in Yukon, Canada and Otago, New Zealand. Geochem: Explor Environ Anal 17(2-3):150–166. https://doi.org/10.1144/geochem2013-262

    Google Scholar 

  • Danyushevsky L, Robinson P, Gilbert S, Norman M, Large R, McGoldrick P, Shelley M (2011) Routine quantitative multi-element analysis of sulphide minerals by laser ablation ICP-MS: standard development and consideration of matrix effects. Geochem: Explor Environ Anal 11(1):51–60. https://doi.org/10.1144/1467-7873/09-244

    Google Scholar 

  • Eisbacher GH (1981) Sedimentary tectonics and glacial record in the Windermere Supergroup, Mackenzie Mountains, northwestern Canada. Geological Survey of Canada, pp 48

  • Epstein AG, Epstein JB, Harris LD (1977) Conodont colour alteration - an index to organic metamorphism. US Geological Survey, Professional Paper 995. pp 27

  • Falkner KK, Edmond JM (1990) Gold in seawater. Earth Planet Sci Lett 98(2):208–221. https://doi.org/10.1016/0012-821X(90)90060-B.

    Article  Google Scholar 

  • Fraser TA, Hutchison MP (2017) Lithogeochemical characterization of the Middle–Upper Devonian Road River Group and Canol and Imperial formations on Trail River, east Richardson Mountains, Yukon: age constraints and a depositional model for fine-grained strata in the Lower Paleozoic Richardson trough. Can J Earth Sci 54:731–765

    Article  Google Scholar 

  • Gaboury D (2013) Does gold in orogenic deposits come from pyrite in deeply buried carbon-rich sediments?: insight from volatiles in fluid inclusions. Geology 41(12):1207–1210. https://doi.org/10.1130/g34788.1

    Article  Google Scholar 

  • Gabrielse H (1967) Tectonic evolution of the northern Canadian Cordillera. Can J Earth Sci 4(2):271–298. https://doi.org/10.1139/e67-013

    Article  Google Scholar 

  • Goldfarb RJ, Groves DI (2015) Orogenic gold: common or evolving fluid and metal sources through time. Lithos 233:2–26. https://doi.org/10.1016/j.lithos.2015.07.011

    Article  Google Scholar 

  • Goldfarb RJ, Groves DI, Gardoll S (2001) Orogenic gold and geologic time: a global synthesis. Ore Geol Rev 18(1-2):1–75. https://doi.org/10.1016/S0169-1368(01)00016-6

    Article  Google Scholar 

  • Goodfellow WD, Cecile MP, Leybourne MI (1995) Geochemistry, petrogenesis, and tectonic setting of lower Paleozoic alkalic and potassic volcanic rocks, Northern Canadian Cordilleran Miogeocline. Can J Earth Sci 32(8):1236–1254. https://doi.org/10.1139/e95-101

    Article  Google Scholar 

  • Gordey SP (2013) Evolution of the Selwyn Basin region, Sheldon Lake and Tay River map areas, central Yukon. Geol Surv Can Bull 599:176

    Google Scholar 

  • Gordey SP, Anderson RG (1993) Evolution of the northern Cordilleran miogeocline, Nahanni map area (105I), Yukon and Northwest Territories. Geological Survey of Canada, Memoir 428. pp 214

  • Gregory DD, Meffre S, Large R (2014) Comparison of metal enrichment in pyrite framboids from a metal-enriched and metal-poor estuary. Am Mineral 99:633–644

    Article  Google Scholar 

  • Gregory DD, Large RR, Halpin JA, Lounejeva Baturina E, Lyons TW, Wu S, Sack PJ, Chappaz A, Maslennikov VV, Bull SW (2015) Trace element content of background sedimentary pyrite in black shales. Econ Geol 110(6):1389–1410. https://doi.org/10.2113/econgeo.110.6.1389

    Article  Google Scholar 

  • Gregory DD, Large RR, Bath AB, Steadman JA, Wu S, Danyushevsky L, Bull SW, Holden P, Ireland TR (2016) Trace element content of pyrite from the kapai slate, St. Ives Gold District, Western Australia. Econ Geol 111(6):1297–1320. https://doi.org/10.2113/econgeo.111.6.1297

    Article  Google Scholar 

  • Gromet LP, Dymek RF, Haskin LA, Korotev RL (1984) The “North American shale composite”: its compilation, major and trace element characteristics. Chem Geol 48:2469–2482

    Google Scholar 

  • Groves DI, Goldfarb RJ, Gebre-Mariam M, Hagemann SG, Robert F (1998) Orogenic gold deposits: a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13(1-5):7–27. https://doi.org/10.1016/S0169-1368(97)00012-7

    Article  Google Scholar 

  • Groves DI, Goldfarb RJ, Robert F, Hart CJR (2003) Gold deposits in metamorphic belts; overview of current understanding, outstanding problems, future research, and exploration significance. Econ Geol 98:1–29

    Google Scholar 

  • Guillong M, Hametner K, Reusser E, Wilson SA, Günther D (2005) Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths. Geostand Geoanal Res 29(3):315–331. https://doi.org/10.1111/j.1751-908X.2005.tb00903.x

    Article  Google Scholar 

  • Hart CJR (2007) Reduced intrusion-related gold systems. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district Metallogeny, the evolution of geological provinces, and exploration methods. Geological Association of Canada, Mineral Deposits Division, Special Publication 5, pp 95–112

  • Hart CJR, Lewis LL (2006) Gold mineralization in the upper Hyland River area: a nonmagmatic origin. In: Emond DS, Bradshaw GD, Lewis LL, Weston LH (eds) Yukon Exploration and Geology 2005. Yukon Geological Survey, Whitehorse, pp 109–125

  • Hildred GV, Ratcliffe KT, Wright AM, Zaitlin BA, Wray DS (2010) Chemostratigraphic applications to low-accomodation fluvial incised-valley settings: an example from the Lower Mannville formation of Alberta, Canada. J Sediment Res 80(11):1032–1045. https://doi.org/10.2110/jsr.2010.089

    Article  Google Scholar 

  • Hronsky JMA, Groves DI, Loucks RR, Begg GC (2012) A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Mineral Deposita 47(4):339–358. https://doi.org/10.1007/s00126-012-0402-y

    Article  Google Scholar 

  • Huston DL, Mernagh TP, Hagemann SG, Doublier MP, Fiorentini M, Champion DC, Lynton Jaques A, Czarnota K, Cayley R, Skirrow R, Bastrakov E (2016) Tectono-metallogenic systems — the place of mineral systems within tectonic evolution, with an emphasis on Australian examples. Ore Geol Rev. https://doi.org/10.1016/j.oregeorev.2015.09.005

  • Hutchison MP, Fraser TA (2015) Palaeoenvironment, palaeohydrography and chemostratigraphic zonation of the Canol Formation, Richardson Mountains, north Yukon. In: K.E. MacFarlane, M.G. Nordling, Sack PJ (eds) Yukon Exploration and Geology 2014. Yukon Geological Survey, Whitehorse, pp 73–98

  • Hyndman RD, Currie CA (2011) Why is the North America Cordillera high? Hot backarcs, thermal isostasy, and mountain belts. Geology 39(8):783–786. https://doi.org/10.1130/g31998.1

    Article  Google Scholar 

  • Large RR, Maslennikov VV, Robert F, Danyushevsky LV, Chang Z (2007) Multistage sedimentary and metamorphic origin of pyrite and gold in the giant Sukhoi Log deposit, Lena gold province, Russia. Econ Geol 102(7):1233–1267. https://doi.org/10.2113/gsecongeo.102.7.1233

    Article  Google Scholar 

  • Large RR, Danyushevsky L, Hollit C, Maslennikov V, Meffre S, Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh B, Foster J (2009) Gold and trace element zonation in pyrite using a laser imaging technique: implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Econ Geol 104(5):635–668. https://doi.org/10.2113/gsecongeo.104.5.635

    Article  Google Scholar 

  • Large RR, Bull SW, Maslennikov VV (2011) A carbonaceous sedimentary source rock model for Carlin-type and orogenic gold deposits. Econ Geol 106(3):331–358. https://doi.org/10.2113/econgeo.106.3.331

    Article  Google Scholar 

  • Large RR, Thomas H, Craw D, Henne A, Henderson S (2012) Diagenetic pyrite as a source for metals in orogenic gold deposits, Otago Schist, New Zealand. N Z J Geol Geophys 55:137–149

    Article  Google Scholar 

  • Large RR, Halpin JA, Danyushevsky LV, Maslennikov VV, Bull SW, Long JA, Gregory DD, Lounejeva E, Lyons TW, Sack PJ, McGoldrick P, Calver CR (2014) Trace element content of sedimentary pyrite as a new proxy for deep-time ocean-atmosphere evolution. Earth Planet Sci Lett 389:209–220. https://doi.org/10.1016/j.epsl.2013.12.020

    Article  Google Scholar 

  • Large RR, Gregory DD, Steadman JA, Tomkins AG, Lounejeva E, Danyushevsky LV, Halpin JA, Maslennikov V, Sack PJ, Mukherjee I, Berry R, Hickman A (2015) Gold in the oceans through time. Earth Planet Sci Lett 428:139–150. https://doi.org/10.1016/j.epsl.2015.07.026

  • Longerich HP, Jackson SE, Gunther D (1996) Laser ablation inductively coupled plasma-mass spectrometric transient signal data acquisition and analyte concentration calculation. J Anal At Spectrom 11(9):899–904. https://doi.org/10.1039/JA9961100899

    Article  Google Scholar 

  • Mair JL, Hart CJR, Stephens JR (2006) Deformation history of the northwestern Selwyn Basin, Yukon, Canada: implications for orogen evolution and mid-Cretaceous magmatism. Geol Soc Am Bull 118(3-4):304–323. https://doi.org/10.1130/B25763.1

    Article  Google Scholar 

  • McQueen KG (2005) Ore deposit types and their primary expressions. In: Butt CRM, Robertson IDM, Scott KM, Cornelius M (eds) Regolith expression of Australian ore systems: a compilation of geochemical case histories and conceptual models. Cooperative Research Centre for Landscape, Environments and Mineral Exploration, pp 14. http://crcleme.org.au/Pubs/Monographs/RegExpOre.html

  • Moynihan DP (2013) A preliminary assessment of low pressure, amphibolite-facies metamorphism in the upper Hyland River area (NTS 105H), southeast Yukon. In: MacFarlane KE, Nordling MG, Sack PJ (eds) Yukon Exploration and Geology 2012. Yukon Geological Survey, Whitehorse, pp 99–114

  • Moynihan D (2014) Bedrock Geology of NT S 106B/04, eastern Rackla belt. In: MacFarlane KE, Nordling MG, Sack PJ (eds) Yukon Exploration and Geology 2013. Yukon Geological Survey, Whitehorse, pp 147–167

  • Moynihan D (2016a) Bedrock geology of the upper Hyland River area, NTS 105H/8, 9, 10, 15, 16 and 105I/2, southeast Yukon. Open File 2016-36. Yukon Geological Survey

  • Moynihan D (2016b) Stratigraphy and structural geology of the upper Hyland River area (parts of 105H/8, 105H/9), southeast Yukon. In: MacFarlane KE, Nordling MG (eds) Yukon Exploration and Geology 2015. Yukon Geological Survey, Whitehorse, pp 187–206

  • Murphy D (1997) Geology of the McQuesten River region, northern McQuesten and Mayo map areas, Yukon Territory (115P/14, 15, 16; 105M/13, 14). Bulletin 6. Indian and Northern Affairs Canada, Exploration and Geological Services Division, Yukon, pp 122

  • Nekrasov IY (1996) Geochemistry, mineralogy and genesis of gold deposits. Nauka, Moscow

    Google Scholar 

  • Nelson JL, Colpron M, Israel S (2013) The Cordillera of British Columbia, Yukon, and Alaska: Tectonics and metallogeny. In: Colpron M, Bissig T, Rusk BG, Thompson JFH (eds) Tectonics, Metallogeny and discovery: The North American Cordillera and similar accretionary setttings. Special Publication 17, Society of Economic Geologists, Littleton, pp 53–109

  • Phillips GN, Powell R (2010) Formation of gold deposits: a metamorphic devolatilization model. J Metamorph Geol 28(6):689–718. https://doi.org/10.1111/j.1525-1314.2010.00887.x

    Article  Google Scholar 

  • Pitcairn IK (2011) Background concentrations of gold in different rock types. Appl Earth Sci 120(1):31–38. https://doi.org/10.1179/1743275811Y.0000000021

    Article  Google Scholar 

  • Pitcairn IK, Teagle DAH, Craw D, Olivo GR, Kerrich R, Brewer TS (2006a) Sources of metals and fluids in orogenic gold deposits: insights from the Otago and Alpine schists, New Zealand. Econ Geol 101(8):1525–1546. https://doi.org/10.2113/gsecongeo.101.8.1525

    Article  Google Scholar 

  • Pitcairn IK, Warwick PE, Milton JA, Teagle DAH (2006b) Method for ultra-low-level analysis of gold in rocks. Anal Chem 78(4):1290–1295. https://doi.org/10.1021/ac051861z

    Article  Google Scholar 

  • Pitcairn IK, Skelton ADL, Wohlgemuth-Ueberwasser CC (2015) Mobility of gold during metamorphism of the Dalradian in Scotland. Lithos 233:69–88. https://doi.org/10.1016/j.lithos.2015.05.006.

    Article  Google Scholar 

  • Ratcliffe KT, Wright AM, Spain D (2012) Unconventional methods for unconventional plays: using elemental data to understand shale resource plays, Part 2. Petroleum Exploration Society of Australia, News Resources:55–60.

  • Read PB, Woodsworth GJ, Greenwood HJ, Ghent ED, Evenchick CA (1991) Metamorphic map of the Canadian Cordillera: map 1714A. Geological Survey of Canada

  • Reznik VP, Fedoronchuk NA (2000) Microscopic gold in marine and oceanic sediments. Lithol Miner Resour 35(4):311–318. https://doi.org/10.1007/bf02782687

    Article  Google Scholar 

  • Richards JP (2015) The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos 233:27–45. https://doi.org/10.1016/j.lithos.2014.12.011.

    Article  Google Scholar 

  • Roots CF (1997) Geology of the Mayo map area, Yukon Territory (105M). Bulletin 7. Indian and Northern Affairs Canada, Exploration and Geological Services Division, Yukon, pp 82

  • Sack PJ, Danyushevskiy L, Gilbert SE, Large RR, Gregory DD (2013) Effects of oxidation and weathering on pyrite chemistry, and implications for evaluating regional gold fertility of the Selwyn Basin, Yukon Whistler 2013: Geoscience for discovery. Society of Economic Geologists, Whistler, B.C

  • Sack PJ, Danyushevsky LV, Large RR, Gilbert SE, Gregory D (2014) Sedimentary pyrite as a gold-source in sediment-hosted gold occurrences in the Selwyn basin area, eastern Yukon. In: K.E. MacFarlane, M.G. Nordling, Sack PJ (eds) Yukon Exploration and Geology 2013. Yukon Geological Survey, Whitehorse, pp 195–220

  • Sack PJ, Kruse S, Ferraro D (2018) Gold occurrences on the Plateau South property (Yukon MINFILE 105N 034, 035, 036), central Yukon. In: K.E. MacFarlane, (ed) Yukon exploration and geology 2017. Yukon Geological Survey, Whitehorse, pp 18

  • Sillitoe RH (2008) Major gold deposits and belts of the North and South American Cordillera: distribution, tectonomagmatic settings, and metallogenic considerations. Econ Geol 103(4):663–687. https://doi.org/10.2113/gsecongeo.103.4.663

    Article  Google Scholar 

  • Steadman JA, Large RR, Meffre S, Bull SW (2013) Age, origin and significance of nodular sulfides in 2680 Ma carbonaceous black shale of the Eastern Goldfields Superterrane, Yilgarn Craton, Western Australia. Precambrian Res 230:227–247. https://doi.org/10.1016/j.precamres.2013.02.013

    Article  Google Scholar 

  • Steadman JA, Large RR, Meffre S, Olin PH, Danyushevsky LV, Gregory DD, Belousov I, Lounejeva E, Ireland TR, Holden P (2015) Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile deposit, Kalgoorlie, Western Australia. Econ Geol 110(5):1157–1191. https://doi.org/10.2113/econgeo.110.5.1157

    Article  Google Scholar 

  • Strauss JV, Root CF, Macdonald FA, Halverson GP, Eyster A, Colpron M (2014) Geological map of the Coal Creek Inlier, Ogilvie Mountains (NTS 116B/10-15 and 116C/9,16). Yukon Geological Survey, Open File 2014-2015

  • Thomas HV, Large RR, Bull SW, Maslennikov V, Berry RF, Fraser R, Froud S, Moye R (2011) Pyrite and pyrrhotite textures and composition in sediments, laminated quartz veins, and reefs at Bendigo gold mine, Australia: insights for ore genesis. Econ Geol 106(1):1–31. https://doi.org/10.2113/econgeo.106.1.1

    Article  Google Scholar 

  • Thompson RI, Root CF, Mustard PS (1992) Geology of Dawson map area (116B,C) (northeast of Tintina Trench). Open File 2849. Geological Survey of Canada, 13 map sheets

  • Tomkins AG (2010) Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis. Geochim Cosmochim Acta 74(11):3246–3259. https://doi.org/10.1016/j.gca.2010.03.003

    Article  Google Scholar 

  • Tomkins AG (2013a) On the source of orogenic gold. Geology 41(12):1255–1256. https://doi.org/10.1130/focus122013.1

    Article  Google Scholar 

  • Tomkins AG (2013b) A biogeochemical influence on the secular distribution of orogenic gold. Econ Geol 108(2):193–197. https://doi.org/10.2113/econgeo.108.2.193

    Article  Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232(1-2):12–32. https://doi.org/10.1016/j.chemgeo.2006.02.012.

    Article  Google Scholar 

  • Turner RJW (1990) Jason stratiform Zn-Pb-barite deposit, Sewyn Basin, Canada (NTS 105O-1): Geological setting, hydrothermal facies and genesis. In: Abbott JG, Turner RJW (eds) Field Trip Guidebook, 8th IAGOD Symposium: Mineral deposits of the northern Canadian Cordillera, Yukon-eastern British Columbia. Geological Survey of Canada, Ottawa, pp 137–175.

  • Vlassopoulos D, Wood SA (1990) Gold speciation in natural waters: I. Solubility and hydrolysis reactions of gold in aqueous solution. Geochim Cosmochim Acta 54(1):3–12. https://doi.org/10.1016/0016-7037(90)90189-R.

    Article  Google Scholar 

  • Whelan SC (2014) Orogenic gold mineralization at 3Ace and geochemical characteristics of quartz monzonite dikes at Sprogge, southeast Yukon Department of Earth and Atmospheric Sciences. MSc Thesis, University of Alberta, pp 184

  • Wilkin R, Barnes H, Brantley S (1996) The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta 60:3897–3912

    Article  Google Scholar 

  • Wilson SA (2012) United States geological survey certificate of analysis, Brush Creek Shale, SBC-1, pp 2

  • YGS (2016) Yukon Digital Bedrock Geology. <http://www.geology.gov.yk.ca/update_yukon_bedrock_geology_map.html> [accessed February, 2017]

  • Zhong R, Brugger J, Tomkins AG, Chen Y, Li W (2015) Fate of gold and base metals during metamorphic devolatilization of a pelite. Geochim Cosmochim Acta 171:338–352. https://doi.org/10.1016/j.gca.2015.09.013.

    Article  Google Scholar 

Download references

Acknowledgments

We express our gratitude to the exploration companies, Atac Resources and Golden Predator Mining for access to drill core and to Jay Thompson for calculating whole rock errors and detection limits of the UTas data. PJS thanks Darwin Green of Constantine Metal Resources for the initial inspiration and Monica Nordling for her assistance in the field. Analyses were partially funded by the Canadian Northern Economic Development Agency. Early reviews by Ben Cave, David Moynihan, and Scott Casselman, and editing by Karen MacFarlane improved the manuscript. Reviews by Associate Editor Karen Kelley, Iain Pitcairn and Erin Marsh are gratefully acknowledged. This is Yukon Geological Survey contribution 021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Sack.

Additional information

Editorial handling: K. Kelley

Electronic supplementary material

Appendix 1

Sample descriptions. Location, lithology, map unit and reference for each sample. (XLSX 21 kb)

Appendix 2

Whole rock analytical data. Data from Activation Laboratories Ltd. and the University of Tasmania. (XLSX 166 kb)

Appendix 3

LA-ICPMS pyrite data. (XLSX 256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sack, P.J., Large, R.R. & Gregory, D.D. Geochemistry of shale and sedimentary pyrite as a proxy for gold fertility in the Selwyn basin area, Yukon. Miner Deposita 53, 997–1018 (2018). https://doi.org/10.1007/s00126-018-0793-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-018-0793-5

Keywords

Navigation