Skip to main content
Log in

Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr–REE–Nb mineralization

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Baerzhe alkaline granite pluton hosts one of the largest rare metal (Zr, rare earth elements, and Nb) deposits in Asia. It contains a geological resource of about 100 Mt at 1.84 % ZrO2, 0.30 % Ce2O3, and 0.26 % Nb2O5. Zirconium, rare earth elements (REE), and Nb are primarily hosted by zircon, yttroceberysite, fergusonite, ferrocolumbite, and pyrochlore. Three types of zircon can be identified in the deposit: magmatic, metamict, and hydrothermal. Primary magmatic zircon grains occur in the barren hypersolvus granite and are commonly prismatic, with oscillatory zones and abundant melt and mineral inclusions. The occurrence of aegirine and fluorite in the recrystallized melt inclusions hosted in the magmatic zircon indicates that the parental magma of the Baerzhe pluton is alkali- and F-rich. Metamict zircon grains occur in the mineralized subsolvus granite and are commonly prismatic and murky with cracks, pores, and mineral inclusions. They commonly show dissolution textures, indicating a magmatic origin with later metamictization due to deuteric hydrothermal alteration. Hydrothermal zircon grains occur in mineralized subsolvus granite and are dipyramidal with quartz inclusions, with murky CL images. They have 608 to 2,502 ppm light REE and 787 to 2,521 ppm Nb, much higher than magmatic zircon. The texture and composition of the three types of zircon indicate that they experienced remobilization and recrystallization during the transition from a magmatic to a hydrothermal system. Large amounts of Zr, REE, and Nb were enriched and precipitated during the transitional period to form the giant low-grade Baerzhe Zr–REE–Nb deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aja SU, Wood SA, Williams-Jones AE (1995) The aqueous geochemistry of Zr and the solubility of some Zr-bearing minerals. Appl Geochem 10(6):603–620

    Article  Google Scholar 

  • Aja SU, Wood SA, WilliamsJones AE (1997) The solubility of some alkali-bearing Zr minerals in hydrothermal solutions. Aqueous Chem Geochem Oxides, Oxyhydroxides, Relat Mater 432:69–74

    Google Scholar 

  • Akagi T, Shabani MB, Masuda A (1993) Lanthanide tetrad effect in kimuraite [CaY2(CO3)4.6H2O]—implication for a new geochemical index. Geochim Cosmochim Acta 57:2899–2905

    Article  Google Scholar 

  • Alderton DHM, Pearce JA, Potts PJ (1980) Rare-earth element mobility during granite alteration—evidence from southwest England. Earth Planet Sci Lett 49:149–165

    Article  Google Scholar 

  • Anczkiewicz R, Oberli F, Burg JP, Villa IM, Gunther D, Meier M (2001) Timing of normal faulting along the Indus suture in Pakistan Himalaya and a case of major 231Pa/235U initial disequilibrium in zircon. Earth Planet Sci Lett 191:101–114

    Article  Google Scholar 

  • Audetat A, Pettke T (2003) The magmatic–hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Canada Pinabete plutons in northern New Mexico (USA). Geochim Cosmochim Acta 67:97–121

    Article  Google Scholar 

  • Ayers JC, Zhang L, Luo Y, Peters T (2012) Zircon solubility in alkaline aqueous fluids at upper crustal conditions. Geochim Cosmochim Acta 96:18–28

    Article  Google Scholar 

  • Badanina EV, Trumbull RB, Dulski P, Wiedenbeck M, Veksler IV, Syritso LF (2006) The behavior of rare-earth and lithophile trace elements in rare-metal granites: a study of fluorite, melt inclusions and host rocks from the Khangilay complex, Transbaikalia, Russia. Can Miner 44:667–692

    Article  Google Scholar 

  • Bakker RJ, Elburg MA (2006) A magmatic–hydrothermal transition in Arkaroola (northern Flinders Ranges, South Australia): from diopside-titanite pegmatites to hematite-quartz growth. Contrib Mineral Petrol 152:541–569

    Article  Google Scholar 

  • Ballard JR, Palin JM, Campbell IH (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Petrol 144:347–364. doi:10.1007/s00410-002-0402-5

    Article  Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333

    Article  Google Scholar 

  • Bau M (1999) Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim Cosmochim Acta 63:67–77

    Article  Google Scholar 

  • Bau M, Dulski P (1995) Comparative-study of yttrium and rare-earth element behaviors in fluorine-rich hydrothermal fluids. Contrib Mineral Petrol 119(2–3):213–223

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O'Reilly SY, Fisher NI (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contrib Mineral Petrol 143:602–622

    Article  Google Scholar 

  • Belousova EA, Griffin WL, O'Reilly SY (2006) Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from Eastern Australian granitoids. J Petrol 47:329–353. doi:10.1093/petrology/egi077

    Article  Google Scholar 

  • Black LP, Kamo SL, Allen CM, Davis DW, Aleinikoff JN, Valley JW, Mundil R, Campbell IH, Korsch RJ, Williams IS, Foudoulis C (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards. Chem Geol 205:115–140. doi:10.1016/j.chemgeo.2004.01.003

    Article  Google Scholar 

  • Burakov BE, Hanchar JM, Zamoryanskaya MV, Garbuzov VM, Zirlin VA (2002) Synthesis and investigation of Pu-doped single crystal zircon, (Zr, Pu)SiO4. Radiochim Acta 90:95–97. doi:10.1524/ract.2002.90.2_2002.95

  • Burnham CW (1979) Magmas and hydrothermal fluids. In: Barnes, HL (ed) Geochemistry of hydrothermal ore deposits. 2nd edn. Wiley, New York, pp. 71–136

  • Corfu F, Hanchar JM, Hoskin PWO, Kinny P (2003) Atlas of zircon textures. Rev Mineral Geochem 53:469–500

    Article  Google Scholar 

  • Currie KL, van Breemen O (1996) The origin of rare minerals in the Kipawa Syenite Complex, western Quebec. Can Mineral 34:435–451

    Google Scholar 

  • Erdmann S, Wodicka N, Jackson S, Corrigan D (2013) Zircon textures and composition: refractory recorders of magmatic volatile evolution? Contrib Mineral Petrol 165:45–71

    Article  Google Scholar 

  • Feng SZ (2000) Geological characteristic and ore genesis of rare metal and rare-earth ore deposit in Baerze alkalic granite, Inner Mongolia. Volcanol Miner Resour 21:137–149 (in Chinese with English abstract)

    Google Scholar 

  • Finlowbates T, Stumpfl EF (1981) The behavior of so-called immobile elements in hydrothermally altered rocks associated with volcanogenic submarine-exhalative ore-deposits. Miner Depos 16:319–328

    Google Scholar 

  • Fu B, Mernagh TP, Kita NT, Kemp AIS, Valley JW (2009) Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung high-sulphidation Au-Ag-(Cu) deposit, SE Australia. Chem Geol 259:131–142

    Article  Google Scholar 

  • Gasquet D, Pelleter E, Cheilletz A, Mouttaqi A, Annich M, El Hakour A, Deloule E, Feraud G (2007) Hydrothermal zircons: a tool for ion microprobe U-Pb dating of gold mineralization (Tamlalt-Menhouhou gold deposit Morocco). Chem Geol 245:135–161. doi:10.1016/j.chemgeo.2007.07.026

    Article  Google Scholar 

  • Geisler T, Rashwan AA, Rahn MKW, Poller U, Zwingmann H, Pidgeon RT, Schleicher H, Tomaschek F (2003) Low-temperature hydrothermal alteration of natural metamict zircons from the Eastern Desert, Egypt. Mineral Mag 67:485–508

    Article  Google Scholar 

  • Geisler T, Schaltegger U, Tomaschek F (2007) Re-equilibration of zircon in aqueous fluids and melts. Elements 3:43–50

    Article  Google Scholar 

  • Gieré R (1990) Hydrothermal mobility of Ti, Zr and REE: examples from the Bergell and Adamello contact aureoles (Italy). Terra Nova 2:60–67. doi:10.1111/j.1365-3121.1990.tb00037.x

    Article  Google Scholar 

  • Hanchar JM, Westrenen WV (2007) Rare earth element behavior in zircon-melt systems. Elements 3:37–42

    Article  Google Scholar 

  • Harley SL, Kelly NM (2007) Zircon tiny but timely. Elements 3:13–18

    Article  Google Scholar 

  • Hay DC, Dempster TJ (2009) Zircon behaviour during low-temperature metamorphism. J Petrol 50:571–589. doi:10.1093/petrology/egp011

    Article  Google Scholar 

  • Horie K, Hidaka H, Gauthier-Lafaye F (2006) Elemental distribution in zircon: alteration and radiation-damage effects. Phys Chem Earth 31:587–592. doi:10.1016/j.pce.2006.01.001

    Article  Google Scholar 

  • Hoskin PWO (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochim Cosmochim Acta 69:637–648

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62

    Article  Google Scholar 

  • Irber W (1999) The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr Hf of evolving peraluminous granite suites. Geochim Cosmochim Acta 63:489–508

    Article  Google Scholar 

  • Jahn BM (2004) The central Asian orogenic belt and growth of the continental crust in the phanerozoic. Geol Soc Spec Publ 226:73–100. doi:10.1144/Gsl.Sp.2004.226.01.05

    Article  Google Scholar 

  • Jahn BM, Wu FY, Capdevila R, Martineau F, Zhao ZH, Wang YX (2001) Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing'an Mountains in NE China. Lithos 59:171–198

    Article  Google Scholar 

  • Jiang SY, Wang RC, Xu XS, Zhao KD (2005) Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems. Phys Chem Earth 30:1020–1029. doi:10.1016/j.pce.2004.11.004

    Article  Google Scholar 

  • Kebede T, Horie K, Hidaka H, Terada K (2007) Zircon ‘microvein’ in peralkaline granitic gneiss, western Ethiopia: origin, SHRIMP U-Pb geochronology and trace element investigations. Chem Geol 242:76–102. doi:10.1016/j.chemgeo.2007.03.014

    Article  Google Scholar 

  • Kempe U, Gotze J, Dandar S, Habermann D (1999) Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhir (Mongolian Altai): indications from a combined CL-SEM study. Mineral Mag 63(2):165–177. doi:10.1180/002646199548402

    Article  Google Scholar 

  • Kinnaird JA (1985) Hydrothermal alteration and mineralization of the alkaline anorogenic ring complexes of Nigeria. J Afr Earth Sci 3(1–2):229–251

    Google Scholar 

  • Kovalenko VI, Tsaryeva GM, Goreglyad AV, Yarmolyuk VV, Troitsky VA, Hervig RL, Farmer GL (1995) The peralkaline granite-related Khaldzan-Buregtey rare-metal (Zr, Nb, Ree) deposit, Western Mongolia. Econ Geol Bull Soc 90(3):530–547

    Article  Google Scholar 

  • Lawrie KC, Mernagh TP, Ryan CG, van Achterbergh E, Black LP (2007) Chemical fingerprinting of hydrothermal zircons: an example from the Gidginbung high sulphidation Au-Ag-(Cu) deposit, New South Wales, Australia. Proc Geologist Assoc 118:37–46

    Article  Google Scholar 

  • Liang JL, Ding X, Sun XM, Zhang ZM, Zhang H, Sun WD (2009) Nb/Ta fractionation observed in eclogites from the Chinese Continental Scientific Drilling Project. Chem Geol 268:27–40

    Article  Google Scholar 

  • Martin LAJ, Duchene S, Deloule E, Vanderhaeghe O (2008) Mobility of trace elements and oxygen in zircon during metamorphism: consequences for geochemical tracing. Earth Planet Sci Lett 267:161–174. doi:10.1016/j.epsl.2007.11.029

    Article  Google Scholar 

  • Masuda A, Ikeuchi Y (1979) Lanthanide tetrad effect observed in marine-environment. Geochem J 13:19–22

    Article  Google Scholar 

  • McNaughton NJ, Mueller AG, Groves DI (2005) The age of the giant Golden Mile deposit, Kalgoorlie, Western Australia: ion-microprobe zircon and monazite U-Pb geochronology of a synmineralization lamprophyre dike. Econ Geol 100:1427–1440

    Article  Google Scholar 

  • Monecke T, Kempf U, Monecke J, Sala M, Wolf D (2002) Tetrad effect in rare earth element distribution patterns: a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim Cosmochim Acta 66:1185–1196

    Article  Google Scholar 

  • Niu HC, Shan Q, Luo Y, Yang WB, Yu XY (2008) Study on the crystal-rich fluid inclusions from the Baerzhe super-large rare elements and REE deposit. Acta Petrol Sin 24:2149–2154 (in Chinese with English abstract)

    Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic-rocks determined using trace-element analyses. Earth Planet Sci Lett 19(2):290–300

    Article  Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandard Newslett 21:115–144

    Article  Google Scholar 

  • Pettke T, Audetat A, Schaltegger U, Heinrich CA (2005) Magmatic-to-hydrothermal crystallization in the W-Sn mineralized mole granite (NSW, Australia)—part II: evolving zircon and thorite trace element chemistry. Chem Geol 220:191–213. doi:10.1016/j.chemgeo.2005.02.017

    Article  Google Scholar 

  • Pupin JP (1980) Zircon and granite petrology. Contrib Mineral Petrol 73:207–220

    Article  Google Scholar 

  • Rubin JN, Henry CD, Price JG (1989) Hydrothermal zircons and zircon overgrowths, Sierra-Blanca peaks, Texas. Am Mineral 74:865–869

    Google Scholar 

  • Rubin JN, Henry CD, Price JG (1993) The mobility of zirconium and other immobile elements during hydrothermal alteration. Chem Geol 110:29–47

    Article  Google Scholar 

  • Salvi S, Williams-Jones AE (1996) The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada. Geochim Cosmochim Acta 60(11):1917–1932

    Article  Google Scholar 

  • Salvi S, Williams-Jones AE (2006) Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: insights from the Strange Lake Pluton, Canada. Lithos 91:19–34. doi:10.1016/j.lithos.2006.03.040

    Article  Google Scholar 

  • Salvi S, Fontan F, Monchoux P, Williams-Jones AE, Moine B (2000) Hydrothermal mobilization of high field strength elements in alkaline igneous systems: evidence from the Tamazeght complex (Morocco). Econ Geol Bull Soc 95(3):559–575. doi:10.2113/95.3.559

    Google Scholar 

  • Schaltegger U (2007) Hydrothermal zircon. Elements 3:51

    Article  Google Scholar 

  • Schaltegger U, Pettke T, Audetat A, Reusser E, Heinrich CA (2005) Magmatic-to-hydrothermal crystallization in the W-Sn mineralized mole granite (NSW, Australia)—part I: crystallization of zircon and REE-phosphates over three million years—a geochemical and U-Pb geochronological study. Chem Geol 220:215–235

    Article  Google Scholar 

  • Schmitt AK, Trumbull RB, Dulski P, Emmermann R (2002) Zr-Nb-REE mineralization in peralkaline granites from the Amis Complex, Brandberg (Namibia): evidence for magmatic pre-enrichment from melt inclusions. Econ Geol Bull Soc 97(2):399–413. doi:10.2113/97.2.399

    Article  Google Scholar 

  • Sheard ER, Williams-Jones AE, Heiligmann M, Pederson C, Trueman DL (2012) Controls on the concentration of zirconium, niobium, and the rare earth elements in the Thor lake rare metal deposit, Northwest Territories, Canada. Econ Geol 107(1):81–104

    Article  Google Scholar 

  • Sinha AK, Wayne DM, Hewitt DA (1992) The hydrothermal stability of zircon—preliminary experimental and isotopic studies. Geochim Cosmochim Acta 56:3551–3560

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Saunders AD, Norry MJ (eds.) Magmatism in oceanic basins. Geological Society London Special Publication 42:313–345

  • Sun Y, Lai Y, Chen J, Shu Q, Yan C (2013) Rare earth and rare metal elements mobility and mineralization during magmatic and fluid evolution in alkaline granite system: evidence from fluid and melt inclusions in Baerzhe granite, China. Resour Geol 63(3):239–261

    Article  Google Scholar 

  • Takahashi Y, Yoshida H, Sato N, Hama K, Yusa Y, Shimizu H (2002) W- and M-type tetrad effects in REE patterns for water–rock systems in the Tono uranium deposit, central Japan. Chem Geol 184:311–335

    Article  Google Scholar 

  • Thomas JB, Bodnar RJ, Shimizu N, Sinha AK (2002) Determination of zircon/melt trace element partition coefficients from SIMS analysis of melt inclusions in zircon. Geochim Cosmochim Acta 66:2887–2901

    Article  Google Scholar 

  • Thomas JB, Bodnar RJ, Shimizu N, Chesner CA (2003) Melt inclusions in zircon. Rev Mineral Geochem 53:63–87

    Article  Google Scholar 

  • Tomaschek F, Kennedy AK, Villa IM, Lagos M, Ballhaus C (2003) Zircons from Syros, Cyclades, Greece—recrystallization and mobilization of zircon during high-pressure metamorphism. J Petrol 44:1977–2002. doi:10.1093/petrology/egg067

    Article  Google Scholar 

  • Trail D, Watson EB, Tailby ND (2012) Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim Cosmochim Acta 97:70–87. doi:10.1016/j.gca.2012.08.032

    Article  Google Scholar 

  • Tu XL, Zhang H, Deng WF, Ling MX, Liang HY, Liu Y, Sun WD (2011) Application of resolution in-situ laser ablation ICP-MS in trace element analyses. Geochimica 40:83–98 (in Chinese with English abstract)

    Google Scholar 

  • Valley PM, Hanchar JM, Whitehouse MJ (2009) Direct dating of Fe oxide-(Cu-Au) mineralization by U/Pb zircon geochronology. Geology 37:223–226. doi:10.1130/G25439a.1

    Article  Google Scholar 

  • Valley PM, Fisher CM, Hanchar JM, Lam R, Tubrett M (2010) Hafnium isotopes in zircon: a tracer of fluid–rock interaction during magnetite–apatite (“Kiruna-type”) mineralization. Chem Geol 275:208–220. doi:10.1016/j.chemgeo.2010.05.011

    Article  Google Scholar 

  • Van Lichtervelde M, Melcher F, Wirth R (2009) Magmatic vs. hydrothermal origins for zircon associated with tantalum mineralization in the Tanco pegmatite, Manitoba, Canada. Am Mineral 94:439–450

    Article  Google Scholar 

  • Van Lichtervelde M, Holtz F, Hanchar JM (2010) Solubility of manganotantalite, zircon and hafnon in highly fluxed peralkaline to peraluminous pegmatitic melts. Contrib Mineral Petrol 160:17–32. doi:10.1007/s00410-009-0462-x

    Article  Google Scholar 

  • Veksler IV (2004) Liquid immiscibility and its role at the magmatic-hydrothermal transition: a summary of experimental studies. Chem Geol 210:7–31. doi:10.1016/j.chemgeo.2004.06.002

    Article  Google Scholar 

  • Veksler IV, Dorfman AM, Kamenetsky M, Dulski P, Dingwell DB (2005) Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochim Cosmochim Acta 69:2847–2860

    Article  Google Scholar 

  • Wang X, Li WX (2002) Typomorphism of the 211 type zircon. Chin Sci Bull 47:154–158

    Google Scholar 

  • Wang YX, Zhao ZH (1997) Geochemistry and origin of the Baerzhe REE-Nb-Be-Zr superlarge deposit. Geochimica 26:24–35 (in Chinese with English abstract)

    Google Scholar 

  • Wang RC, Che XD, Zhang WL, Zhang AC, Zhang H (2009) Geochemical evolution and late re-equilibration of Na-Cs-rich beryl from the Koktokay #3 pegmatite (Altai, NW China). Eur J Miner 21:795–809

    Article  Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited—temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Article  Google Scholar 

  • Watson EB, Wark DA, Thomas JB (2006) Crystallization thermometers for zircon and rutile. Contrib Mineral Petrol 151:413–433

    Article  Google Scholar 

  • Wu FY, Sun DY, Li HM, Jahn BM, Wilde S (2002) A-type granites in northeastern China: age and geochemical constraints on their petrogenesis. Chem Geol 187(1–2):143–173

    Article  Google Scholar 

  • Xu X-S, Zhang M, Zhu K-Y, Chen X-M, He Z-Y (2012) Reverse age zonation of zircon formed by metamictisation and hydrothermal fluid leaching. Lithos 150:256–267

    Article  Google Scholar 

  • Yang WB, Niu HC, Shan Q, Luo Y, Yu XY (2009) Ore-forming mechanism of the Baerzhe super-large rare and rare earth elements deposit. Acta Petrol Sin 25:2924–2932 (in Chinese with English abstract)

    Google Scholar 

  • Yang WB, Su WC, Liao SP, Niu HC, Luo Y, Shan Q, Li NB (2011) Melt and melt-fluid inclusions in the Baerzhe alkaline granite: Information of the magmatic-hydrothermal transition. Acta Petrol Sin 27:1493–1499 (in Chinese with English abstract)

    Google Scholar 

  • Yang WB, Niu HC, Sun WD, Shan Q, Zheng YF, Li NB, Li CY, Arndt NT, Xu X, Jiang YH, Yu XY (2013) Isotopic evidence for continental ice sheet in mid-latitude region in the supergreenhouse Early Cretaceous. Sci Rep 3:2732. doi:10.1038/Srep02732

    Google Scholar 

  • Yuan ZX, Bai G, Ding XS (1980) Mineralogy and geochemistry of the “801” alkaline porphyric rare metal deposit. Institute of Geology Chinese Academy of Geological Sciences: Research Reports No. 0030:1–108 (in Chinese)

  • Yuan ZX, Zhang M, Wan DF (2003) A discussion on the petrogenesis of 18O-low alkali granite—a case study of Baerzhe alkali granite in Inner Mongolia. Acta Petrol Miner 22:119–124 (in Chinese with English abstract)

    Google Scholar 

  • Yuan ZX, Bai G, Yang ZQ, Yang YQ (2007) The self-metasomatism of ore in rare metal and rare earth deposits and it implication. Festschrift of Academician Guo Chengji: 66–70 (in Chinese with English abstract)

  • Zhang M, Salje EKH (2003) Spectroscopic characterization of metamictization and recrystallization in zircon and titanite. Phase Transit 76:117–136. doi:10.1080/0141159031000076093

    Article  Google Scholar 

  • Zhang M, Salje EKH, Farnan I, Graeme-Barber A, Daniel P, Ewing RC, Clark AM, Leroux H (2000) Metamictization of zircon: Raman spectroscopic study. J Phys-Condens Mat 12:1915–1925

    Article  Google Scholar 

  • Zhao ZH, Xiong XL, Hen XD, Wang YX, Qiang W, Bao ZW, Jahn B (2002) Controls on the REE tetrad effect in granites: evidence from the Qianlishan and Baerzhe granites, China. Geochem J 36:527–543

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the NSFC grant 40872066 and GIGCAS 135 project Y234041001. The authors gratefully acknowledge Profs. Fan-Rong Chen, Ian H. Campbell, and Yu-Zhuo Qiu for constructive reviews of an earlier version of the manuscript. We are grateful to Prof. Li-Ren Cheng, and Drs. Qiu-Li Li and Xiang-Lin Tu for the assistance in field works, and the help with SIMS and LA-ICPMS analyses, respectively. We thank two anonymous reviewers for constructive comments and AE, Christina Yan Wang that helped improve the manuscript substantially. We also thank Pete Hollings and the editor-in-chief, Bernd Lehmann, for polishing the English language. This is contribution No. IS-1776 from GIGCAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Cai Niu.

Additional information

Editorial handling: C. Wang

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(DOC 870 kb)

Supplementary Fig. 2

(DOC 2114 kb)

Supplementary Fig. 3

(DOC 35 kb)

Supplementary Tables

(DOC 150 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, WB., Niu, HC., Shan, Q. et al. Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr–REE–Nb mineralization. Miner Deposita 49, 451–470 (2014). https://doi.org/10.1007/s00126-013-0504-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-013-0504-1

Keywords

Navigation