Skip to main content
Log in

Mineralogical and stable isotope studies of gold–arsenic mineralisation in the Sams Creek peralkaline porphyritic granite, South Island, New Zealand

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

At Sams Creek, a gold-bearing, peralkaline granite porphyry dyke, which has a 7 km strike length and is up to 60 m in thickness, intrudes camptonite lamprophyre dykes and lower greenschist facies metapelites and quartzites of the Late Ordovician Wangapeka formation. The lamprophyre dykes occur as thin (< 3 m) slivers along the contacts of the granite dyke. δ18Omagma values (+5 to +8‰, VSMOW) of the A-type granite suggest derivation from a primitive source, with an insignificant mature crustal contribution. Hydrothermal gold–sulphide mineralisation is confined to the granite and adjacent lamprophyre; metapelite country rocks have only weak hydrothermal alteration. Three stages of hydrothermal alteration have been identified in the granite: Stage I alteration (high fO2) consisting of magnetite–siderite±biotite; Stage II consisting of thin quartz–pyrite veinlets; and Stage III (low fO2) consisting of sulphides, quartz and siderite veins, and pervasive silicification. The lamprophyre is altered to an ankerite–chlorite–sericite assemblage. Stage III sulphide veins are composed of arsenopyrite + pyrite ± galena ± sphalerite ± gold ± chalcopyrite ± pyrrhotite ± rutile ± graphite. Three phases of deformation have affected the area, and the mineralised veins and the granite and lamprophyre dykes have been deformed by two phases of folding, the youngest of which is Early Cretaceous. Locally preserved early-formed fluid inclusions are either carbonic, showing two- or three-phases at room temperature (liquid CO2-CH4 + liquid H2O ± CO2 vapour) or two-phase liquid-rich aqueous inclusions, some of which contain clathrates. Salinities of the aqueous inclusions are in the range of 1.4 to 7.6 wt% NaCl equiv. Final homogenisation temperatures (Th) of the carbonic inclusions indicate minimum trapping temperatures of 320 to 355°C, which are not too different from vein formation temperatures of 340–380°C estimated from quartz–albite stable isotope thermometry. δ18O values of Stage II and III vein quartz range from +12 and +17‰ and have a bimodal distribution (+14.5 and +16‰) with Stage II vein quartz accounting for the lower values. Siderite in Stage III veins have δ18O (+12 to +16‰) and δ13C values (−5‰, relative to VPDB), unlike those from Wangapeka Formation metasediments (δ13Cbulk carbon values of −24 to −19‰) and underlying Arthur Marble marine carbonates (δ18O = +25‰ and δ13C = 0‰). Calculated δ18Owater (+8 to +11‰, at 340°C) and \(\delta^{13}{\text{C}}_{{\rm CO}_{2}}\)(−5‰) values from vein quartz and siderite are consistent with a magmatic hydrothermal source, but a metamorphic hydrothermal origin cannot be excluded. δ34S values of sulphides range from +5 to +10‰ (relative to CDT) and also have a bimodal distribution (modes at +6 and +9‰, correlated with Stage II and Stage III mineralisation, respectively). The δ34S values of pyrite from the Arthur Marble marine carbonates (range from +3 to +13‰) and Wangapeka Formation (range from −4 to +9.5‰) indicate that they are potential sources of sulphur for sulphides in the Sams Creek veins. Another possible source of the sulphur is the lithospheric mantle which has positive values up to +14‰. Ages of the granite, lamprophyre, alteration/mineralisation, and deformation in the region are not well constrained, which makes it difficult to identify sources of mineralisation with respect to timing. Our mineralogical and stable isotope data does not exclude a metamorphic source, but we consider that the source of the mineralisation can best be explained by a magmatic hydrothermal source. Assuming that the hydrothermal fluids were sourced from crystallisation of the Sams Creek granite or an underlying magma chamber, then the Sams Creek gold deposit appears to be a hybrid between those described as reduced granite Au–Bi deposits and alkaline intrusive-hosted Au–Mo–Cu deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bottinga Y (1969) Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochimica et Cosmochimica Acta 33:49–64

    Article  Google Scholar 

  • Boutton TW (1991) Stable carbon isotope ratios of natural materials: I. Sample preparation and mass spectrometric analysis In: Coleman DC, Fry B (eds) Carbon Isotope Techniques. Academic Press, pp 155–171

  • Bradshaw MA (2000) Base of the Devonian Baton Formation and the question of a pre-Baton tectonic event in the Takaka Terrane, NZ J Geol Geophys 43:601–610

    Google Scholar 

  • Brathwaite RL, Faure K (2004) The Sams Creek peralkaline granite hosted gold deposit, Northwest Nelson, New Zealand: a new variant on alkaline intrusion-related gold deposits, Proc PACRIM Cong, pp 273–274

  • Brathwaite RL, Kamo S, Faure K (2004) U-Pb geochronology and geochemistry of molybdenum-bearing granodiorite porphyry at Copperstain Creek, west Nelson, New Zealand. NZ J Geol Geophys 47:219–225

    Google Scholar 

  • Brathwaite RL, Pirajno F (1993) Metallogenic map of New Zealand: Monograph 3. Institute of Geological & Nuclear Sciences, Lower Hutt, p 215

    Google Scholar 

  • Carothers WW, Adami LH, Rosenbauer RJ (1988) Experimental oxygen isotope fractionation between siderite-water and phosphoric acid liberated CO2 -siderite. Geochimica et Cosmochimica Acta 52:2445–2450

    Article  Google Scholar 

  • Chacko T, Cole DR, Horita J (2001) Equilibrium oxygen, hydrogen and carbon isotope fractionation factors applicable to geologic systems. Stable isotope geochemistry In: Valley JW, Cole DR (eds) Rev Mineral Geochem 43:1–81

  • Challis GA, Grapes R, Palmer K (1995) Chromium muscovite, uvarovite, and zincian chromite: products of regional metasomatism in northwest Nelson, New Zealand. Canad Mineral 33:1263–1284

    Google Scholar 

  • Chaussidon M, Albarede F, Sheppard SMF (1987) Sulfur isotope heterogeneity in the mantle from ion microprobe measurements of sulphide inclusions in diamonds. Nature 330:242–244

    Article  Google Scholar 

  • Clayton RN, Kieffer SW (1991) Oxygen isotopic thermometer calibrations In: Taylor HP Jr, O’Neil JR, Kaplan IR (eds) Stable isotope geochemistry; a tribute to Samuel Epstein, pp 3–10

  • Clayton RN, O’Neil JR, Mayeda TK (1972) Oxygen isotope exchange between quartz and water. J Geophys Res 77:3057–3067

    Article  Google Scholar 

  • Clementson IM (1987) Takaka River PL 31–1195 and Cobb River PL 31–1196, Sams Creek project, report on exploration March 1985 to May 1987. CRA Exploration Pty Ltd, Ministry of Economic Development, Wellington, unpublished open file mineral report MR1014

  • Collins PLF (1979) Gas hydrates in CO2-bearing fluid inclusions and the use of freezing data for estimation of salinity. Econ Geol 74:1435–1444

    Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Petrol 80:189–200

    Article  Google Scholar 

  • Cooper RA (1989) Early Paleozoic terranes of New Zealand. J Roy Soc NZ 19:73–112

    Google Scholar 

  • Cooper RA, Tulloch AJ (1992) Early Palaeozoic terranes in New Zealand and their relationship to the Lachlan Fold Belt. Tectonophysics 214:129–144

    Article  Google Scholar 

  • Craw D, Hall AJ, Fallick AE, Boyce AJ (1995) Sulphur isotopes in a metamorphogenic gold deposit, Macraes Mine, Otago Schist, New Zealand. NZ J Geol Geophys 38:131–136

    Google Scholar 

  • Criss RE, Ekren EB, Hardyman RF (1984) Casto ring zone; a 4,500-km2 fossil hydrothermal system in the Challis volcanic field, central Idaho. Geology 12:331–334

    Article  Google Scholar 

  • Deines P (2002) The carbon isotope geochemistry of mantle xenoliths. Earth-Sci Rev 58:247–278

    Article  Google Scholar 

  • de Ronde CEJ, Sibson RH, Bray CJ, Faure K (2001) Fluid chemistry of veining associated with an ancient microearthquake swarm, Benmore Dam, New Zealand. Geol Soc Am Bull 113:1010–1024

    Article  Google Scholar 

  • Diamond LW (2003) Introduction to gas-bearing aqueous fluid inclusions In: Sanson I, Anderson A, Marshall D (eds) Fluid inclusions: analysis and interpretation. Mineral Assoc Can Short Course Ser 32:101–158

  • Eldridge CS, Compston W, Williams IS, Harris JW, Bristow JW (1991) Isotope evidence for the involvement of recycled sediments in diamond formation. Nature 353:649–653

    Article  Google Scholar 

  • Faure K, Brathwaite RL, de Ronde CEJ (2003) Gold mineralisation in the polymetallic Sams Creek peralkaline microgranite, South Island, New Zealand. Proc Geofluids IV, J Geochem Exp 78–79:613–616

    Google Scholar 

  • Giles AD, Marshall B (1994) Fluid inclusion studies on a multiply deformed, metamorphosed volcanic-associated massive sulfide deposit, Joma Mine, Norway. Econ Geol 89:803–819

    Google Scholar 

  • Giletti BJ (1986) Diffusion effects on oxygen isotope temperatures of slowly cooled igneous and metamorphic rocks. Earth Planet Sci Lett 77:218–228

    Article  Google Scholar 

  • Golyshev SI, Padalko NL, Pechenkin SA (1981) Fractionation of stable isotope oxygen and carbon in carbonate systems. Geochem Int 18:85–99

    Google Scholar 

  • Gregory RT, Criss RE, Taylor HP Jr (1989) Oxygen isotope exchange kinetics of mineral pairs in closed and open systems; applications to problems of hydrothermal alteration of igneous rocks and Precambrian iron formations. Chem Geol 75:1–42

    Article  Google Scholar 

  • Grindley GW (1978) Late Precambrian-Devonian startigraphy and Tuhua Orogeny In: Suggate RP, Stevens GR, Te Punga MT (eds) Geology of New Zealand. Dept of Scientific and Industrial Research, Wellington, 80–90 and 124–132

  • Grindley GW (1980) Sheet S13–Cobb. Geological map of New Zealand, Dept of Scientific and Industrial Research, Wellington, 46p

  • Harmon RS, Hoefs J (1986) S-isotope relationships in late Cenozoic destructive plate margin and continental intraplate volcanic rocks. Terra Cognita 6:182

    Google Scholar 

  • Harmon RS, Hoefs J, Wedepohl KH (1987) Stable isotope (O, H, S) relationships in Tertiary basalts and their mantle xenoliths from the northern Hessian Depression, W.-Germany. Contrib Mineral Petrol 95:350–369

    Article  Google Scholar 

  • Harris C (1995) Oxygen isotope geochemistry of the Mesozoic anorogenic complexes of Damaraland, Northwest Namibia; evidence for crustal contamination and its effect on silica saturation. Contrib Mineral Petrol 122:308–321

    Article  Google Scholar 

  • Harris C, Faure K, Diamond RE, Scheepers R (1997) Oxygen and hydrogen isotope geochemistry of S- and I-type granitoids: the Cape Granite suite, South Africa. Chem Geol 143:96–114

    Article  Google Scholar 

  • Hickey KA (1986) Geology of Paleozoic and Tertiary rocks between Upper Takaka and the Waingaro River, north-west Nelson. Unpublished MSc Thesis, University of Auckland, Auckland

  • Hogan JP, Gilbert MC (1995) The A-type Mount Scott Granite sheet: The importance of crustal magma traps. J Geophys Res, Planets 100, No. B8: 15779–15792

  • Ionov DA, Hoefs J, Wedepohl KH, Wiechert U (1992) Content and isotopic composition of sulphur in ultramafic xenoliths from Central Asia. Earth Planet Sci Lett 111:269–286

    Article  Google Scholar 

  • Ishihara S (1981) The granitoid series and mineralization. Econ Geol, Seventy-fifth anniversary volume: 458–484

  • Ishihara S, Jin M-S, Sasaki A (2000) Source diversity of ore sulfur from Mesozoic-Cenozoic mineral deposits in the Korean Peninsula region. Res Geol 50:203–212

    Google Scholar 

  • Ishihara S, Sasaki A (2002) Paired sulfur isotopic belts: Late Cretaceous-Paleogene ore deposits of Southwest Japan. Bull Geol Sur Jpn 53:461–477

    Google Scholar 

  • Ishihara S, Murakami H (2004) Granitoid types related to Cretaceous plutonic Au-quartz vein and Cu-Fe skarn deposits, Kitakami mountains, Japan. Res Geol 54:281–298

    Google Scholar 

  • Javoy M, Weis D (1987) Oxygen isotopic composition of alkaline anorogenic granites as a clue to their origin; the problem of crustal oxygen. Earth Planet Sci Lett 84:415–422

    Article  Google Scholar 

  • Jensen EP, Barton MD (2000) Gold deposits related to alkaline magmatism. In: Hagemann SG, Brown PE (eds) Gold in 2000. Rev in Econ Geol 13:279–314

  • Jongens R (1997) The Anatoki Fault and the structure of the adjacent Buller and Takaka Terrane rocks, Northwest Nelson, New Zealand. Unpublished PhD thesis, University of Canterbury, Christchurch. 383p

  • Jongens R (2004) East-directed thrusting across the Buller and Takaka terranes, Northwest Nelson. Geol Soc NZ Miscell Pub 117A:51–52

    Google Scholar 

  • Kerrich R, Beckinsale RD, Durham JJ (1977) The transition between deformation regimes dominated by intercrystalline diffusion and intracrystalline creep evaluated by oxygen isotope geothermometry. Tectonophysics 38:241–258

    Article  Google Scholar 

  • Kyser TK (1986) Stable isotope variations in the mantle In: Valley JW, Taylor HP Jr, O’Neil JR (eds) Stable isotopes in high temperature geological processes, Rev Mineral v. 16, Mineralogical Society of America, pp 141–164

  • Lang JR, Baker T (2001) Intrusion-related gold systems: the present level of understanding. Mineralium Deposita 36:477–489

    Article  Google Scholar 

  • McCrea JM (1950) On the isotopic chemistry of carbonates and palaeo-temperature scale. J Chem Phys 18:849–857

    Article  Google Scholar 

  • Marsh EE, Goldfarb RJ, Hart CRJ, Johnson CA (2003) Geology and geochemistry of the Clear Creek intrusion-related gold occurrences, Tintina Gold Province, Yukon, Canada. Canad J Earth Sci 40:681–699

    Article  Google Scholar 

  • Marshall B, Giles AD, Hagemann SG (2000) Fluid inclusions in metamorphosed and synmetamorphic (including metamorphogenic) base and precious metal deposits: indicators of ore-forming conditions and/or ore-modifying histories? In: Spry PG, Marshall B, Vokes FM (eds) Metamorphosed and metamorphogenic ore deposits. Rev Econom Geol 11:119–148

  • Muir RJ, Weaver SD, Bradshaw JD, Eby GN, Evans JA (1995) The Cretaceous Separation Point Batholith, New Zealand; granitoid magmas formed by melting of mafic lithosphere. J Geol Soc Lond 152:689–701

    Article  Google Scholar 

  • Muir RJ, Ireland TR, Weaver SD, Bradshaw JD (1996) Ion microprobe dating of Paleozoic granitoids: Devonian magmatism in New Zealand and correlations with Australia and Antarctica. Chem Geol 127:191–210

    Article  Google Scholar 

  • Müller D, Groves DI (1993) Direct and indirect associations between potassic igneous rocks, shoshonites and gold-copper deposits. Ore Geol Rev 8:383–406

    Article  Google Scholar 

  • Münker C, Cooper R (1999) The Cambrian arc complex of the Takaka Terrane, New Zealand: an integrated stratigraphical, paleontological and geochemical approach. NZ J Geol Geophys 42:415–445

    Google Scholar 

  • Oceana Gold Limited (2004) Prospectus. 174p

  • O’Hara KD, Sharp ZD, Moecher DP, Jenkin GRT (1997) The effect of deformation on oxygen isotope exchange in quartz and feldspar and significance of isotopic temperatures in mylonites. J Geol 105:193–204

    Google Scholar 

  • Ohmoto H (1972) Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Econ Geol 67:551–578

    Article  Google Scholar 

  • Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, pp 517–612

  • O’Neil JR, Chappell BW (1977) Oxygen and hydrogen isotope relations in the Berridale Batholith. J Geol Soc Lond 133:559–571

    Article  Google Scholar 

  • Poulson SR, Kubilius WP, Ohmoto H (1991) Geochemical behavior of sulfur in granitoids during intrusion of the South Mountain Batholith, Nova Scotia, Canada. Geochimica et Cosmochimica Acta 55:3809–3830

    Article  Google Scholar 

  • Rattenbury MS, Cooper RA, Johnston MR (1998) Geology of the Nelson area: 1:250 000 geological map 9. Institute of Geological & Nuclear Sciences, Lower Hutt, 67p

  • Reynolds L (2004) Exploration at the Sams Creek project, northwest Nelson, New Zealand. Proceedings of the 37th Annual Conference of the New Zealand Branch of the Australasian Institute of Mining and Metallurgy:27–336

  • Richards JP (1995) Alkalic-type gold deposits: a review In: Thompson JHF (ed) Magmas, Fluids and Ore Deposits. Mineral. Assoc. Canada, Short Course Vol. 23, pp 267–400

  • Richet P, Bottinga Y, Javoy M (1977) A review of hydrogen, carbon, nitrogen, oxygen, sulphur, and chlorine stable isotope fractionation among gaseous molecules. Ann Rev Earth Planet Sci 5:65–110

    Article  Google Scholar 

  • Robinson W, Kusakabe M (1975) Quantitative preparation of sulfur dioxide, for 34S/32S analyses, from sulfides by combustion with cuprous oxide. Anal Chem 47:1179–1181

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions. Mineral Soc Am Rev Mineral Vol. 12

  • Rosenbaum J, Sheppard SMF (1986) An isotopic study of siderites, dolomites and ankerites at high temperatures. Geochimica et Cosmochimica Acta 50:1147–1150

    Article  Google Scholar 

  • Rowins SM (2000) Reduced porphyry copper-gold deposits: a new variation on an old theme. Geology 28:491–494

    Article  Google Scholar 

  • Sasaki A, Arikawa Y, Folinsbee RE (1979) Kiba reagent method of sulfur extraction applied to isotopic work. Bull Geol Sur Jpn 30:1179–1181

    Google Scholar 

  • Schneider A (1970) The sulfur isotope composition of basaltic rocks. Contrib Mineral Petrol 25:95–124

    Article  Google Scholar 

  • Sharp ZD (1990) Laser-based microanalytical method for the in situ determination of oxygen isotope ratios of silicates and oxides. Geochimica et Cosmochimica Acta 54:1353–1357

    Article  Google Scholar 

  • Shelley D (1984) Takaka River recumbent fold complex, Nelson, New Zealand. NZ J Geol Geophy 27:139–149

    Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DHM (1985) A practical guide to fluid inclusion studies. Blackie and Son, Glasgow

    Google Scholar 

  • Sheppard SMF (1986) Characterization and isotopic variations in natural waters In: Valley JW, Taylor HPJ, O’Neil JR (eds) Stable isotope in high temperature geological processes. Rev Mineral v. 16, Mineralogical Society of America, pp 165–183

  • Sillitoe RH (2000) Gold-rich porphyry deposits; descriptive and genetic models and their role in exploration and discovery In: Hagemann SG, Brown PE (eds) Gold in 2000. Rev Econ Geol 13:315–345

    Google Scholar 

  • Taylor HPJ, Sheppard SMF (1986) Igneous rocks: I Processes of isotopic fractionation and isotope systematics. In: Valley JW, Taylor HPJ, O’Neil JR (eds) Stable isotope in high temperature geological processes. Brookcrafters Inc., Michigan, pp 227–271

    Google Scholar 

  • Thiéry R, van den Kerkhof AM, Dubessy J (1994) VX properties of CH4 -CO2 and CO2 -N2 fluid inclusions; modelling for T<31°C and P<400 bars. Eur J Mineral 6:753–771

    Google Scholar 

  • Thompson JFH, Newberry RJ (2000) Gold deposits related to reduced granitic intrusions In: Hagemann SG, Brown PE (eds) Gold in 2000. Rev Econ Geol 13:377–400

    Google Scholar 

  • Tulloch AJ (1983) Granitoid rocks of New Zealand; a brief review. In: Roddick JA (ed) Circum-Pacific Plutonic Terranes. Memoir–Geological Society of America 159:5–20

  • Tulloch AJ (1992) Petrology of the Sams Creek peralkaline granite dike, Takaka, New Zealand. NZ J Geol Geophys 35:193–200

    Google Scholar 

  • Tulloch AJ, Dunlap WJ (submitted) A Carboniferous 40Ar/39Ar amphibole emplacement age for the Au-bearing Sams Creek alkali-feldspar granite dike, west Nelson, New Zealand. NZ J Geol Geophys

  • Tulloch AJ, Kimborough DL, Faure K, Allibone AH (2003) Paleozoic plutonism in the New Zealand sector of Gondwana In: Blevin P, Jones M, Chappell (eds) Magmas to mineralisation: the Ishihara symposium. Geoscience Australia, Macquarie University, pp 123–124

  • Tulloch AJ, Kimbrough DL (2003) Paired plutonic belts in convergent margins and the development of high Sr/Y magmatism: the Peninsular Ranges Batholith of California and the Median Batholith of New Zealand. Tectonic evolution of northwestern Mexico and southwestern USA. Geol Soc Am Spl Paper 374:275–295

    Google Scholar 

  • Tulloch AJ, Rabone SDC (1993) Mo-bearing granodiorite porphyry plutons of the Early Cretaceous Separation Point Suite, west Nelson, New Zealand. NZ J Geol Geophys 36:401–408

    Google Scholar 

  • Turner SP, Foden JD, Deblond A, Duchesne JC (1992) Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padhaway Ridge, South Australia. Lithos 28:23–55

    Article  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  Google Scholar 

  • Voll G (1976) Recrystallization of quartz, biotite and feldspars from Erstfeld to the Leventina Nappe, Swiss Alps, and its geological significance. Schweizerische mineralogische und petrographische Mitteilungen 56:641–647

    Google Scholar 

  • Whalen JB, Currie KL, Chappell BW (1987) A-type granites: geochemical characteristics, discrimination and petrogenesis. Contrib Mineral Petrol 95:407–419

    Article  Google Scholar 

  • Windle SJ (1989) The nature and origin of gold mineralisation at Sams Creek, North-west Nelson. Unpublished MSc, Thesis, University of Otago, Dunedin

  • Windle SJ, Craw D (1991) Gold mineralisation in a syntectonic granite dike, Sams Creek, Northwest Nelson, New Zealand. NZ J Geol Geophys 34:429–440

    Google Scholar 

  • Wyman D, Kerrich R (1988) Alkaline magmatism, major structures, and gold deposits: implications for greenstone belt gold metallogeny. Econ Geol 83:454–461

    Google Scholar 

  • Wyman D, Kerrich R (1989) Archean shoshonitic lamprophyres associated with Superior province gold deposits: distribution, tectonic setting, noble metal abundances, and significance for gold mineralization Economic Geology, Monograph 6. pp 651–667

  • Zhang CL, Horita J, Cole DR, Zhou J, Lovley DR, Phelps TJ (2001) Temperature-dependent oxygen and carbon isotope fractionations of biogenic siderite. Geochimica et Cosmochimica Acta 65:2257–2271

    Article  Google Scholar 

  • Zheng Y-F (1993) Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochimica et Cosmochimica Acta 57:1079–1091

    Article  Google Scholar 

  • Zheng Y-F (1999) Oxygen isotope fractionation in carbonate and sulfate minerals. Geochem J 33:109–126

    Google Scholar 

Download references

Acknowledgements

Oceana Gold Ltd (formerly GRD Macraes) provided access to drill core and information on the Sams Creek prospect. In particular we thank Lachlan Reynolds, Sean Doyle, Austin Osborne and Peter Grieve for their help. We acknowledge the help of Cornel de Ronde who provided the impetus to start our research on Sams Creek, and Andy Tulloch, Ian Graham, Roger Cooper and Richard Jongens for discussions. We thank Phil Warnes, Karyne Rogers, Ray Soong, Neville Orr, Steve Mawdesley, Christine Prior, Julia Vodanovich and John Simes for their technical assistance. The study was funded by the Foundation of Research, Science and Technology CO5XO207. The manuscript has benefited greatly from thorough reviews by Jeremy Richards, Stuart Simmons, and Jeff Mauk, and scientific and editorial comments by Larry Meinert.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Faure.

Additional information

Communicated by Editorial handling: J. Richards

Appendix I

Appendix I

Sample no.

Site

Rock description

NZMG East

NZMG North

RL (m)

Azimuth true N

Dip

EOH (m)

Bore hole samples

SC1 3.07

Sams Creek, Main Zone

Quartz vein in granite

8973

1575

562.00

121

−45.0

84.10

SC1 3.07

Sams Creek, Main Zone

Quartz vein in granite

8973

1575

562.00

121

−45.0

84.10

SC4 221.3

Sams Creek, Main Zone

Arsenopyrite-pyrite veinlets in silicified microgranite

9030

1616

556.60

66

−45.0

19.50

SC4 228.25

Sams Creek, Main Zone

Contact metapelite/carbonate-chlorite altered lamprophyre

9030

1616

556.60

66

−45.0

19.50

SC15 18.1

Sams Creek, Main Zone

Quartz vein in granite

8986

1593

461.42

331

−45.0

27.40

SC15 21.7

Sams Creek, Main Zone

Quartz vein in granite

8986

1593

461.42

331

−45.0

27.40

SC16 123.25

Sams Creek, Main Zone

Sulphide vein in granite

9008

1614

245.44

331

−55.0

213.75

SC16 4.65

Sams Creek, Main Zone

Sulphide vein in granite

9012

1614

245.44

331

−55.0

213.75

SC16 9.9

Sams Creek, Main Zone

Quartz-sulfide veins in silicified microgranite

9012

1614

245.44

331

−55.0

213.75

SC16A 15.0

Sams Creek, Main Zone

Sulphide vein in granite

9012

1614

245.44

311

−45.0

32.90

SC16A 20.9

Sams Creek, Main Zone

Sulphide vein in granite

9012

1614

245.44

311

−45.0

32.90

SC16A 26.18

Sams Creek, Main Zone

Sulphide vein in granite

9012

1614

245.44

311

−45.0

32.90

SC17A 10.2

Sams Creek, Main Zone

Sulphide vein in granite

9012

1614

245.44

331

−70.0

28.90

SC18 13.55

Sams Creek, Main Zone

Quartz-sulfide veins in silicified microgranite

9004

1605

315.00

321

−60.0

62.40

SC19 226.8

Sams Creek, Main Zone

Carbonate-quartz vein in granite

9009

1607

288.87

331

−45.0

230.00

SC25 137.75

Sams Creek, Main Zone

Porphyry granite

8992

1598

398.00

331

−47.5

250.00

SC25 138.0

Sams Creek, Main Zone

Carbonate-quartz vein in granite

8992

1598

398.00

331

−47.5

250.00

SC25 144.2

Sams Creek, Main Zone

Carbonate-quartz vein in granite

8992

1598

398.00

331

−47.5

250.00

SC25 147.0

Sams Creek, Main Zone

Quartz vein in granite

8992

1598

398.00

331

−47.5

250.00

SC25 151.7

Sams Creek, Main Zone

Carbonate-quartz vein in granite

8992

1598

398.00

331

−47.5

250.00

SC25 159.1

Sams Creek, Main Zone

Carbonate-sulphide vein in granite

8992

1598

398.00

331

−47.5

250.00

SC25 171.0

Sams Creek, Main Zone

Carbonate vein in granite

8992

1598

398.00

331

−47.5

250.00

SC25 171.1

Sams Creek, Main Zone

Quartz vein in granite

8992

1598

398.00

331

−47.5

250.00

SC25 174.8

Sams Creek, Main Zone

Sulphide vein in granite

8992

1598

398.00

331

−47.5

250.00

SC25 176.0

Sams Creek, Main Zone

Carbonate vein in granite

8992

1598

398.00

331

−47.5

250.00

SC25 176.4

Sams Creek, Main Zone

Carbonate vein in granite

8992

1598

398.00

331

−47.5

250.00

SC25 177.65

Sams Creek, Main Zone

Sulphide vein in granite

8992

1598

398.00

331

−47.5

250.00

SC25 203.1

Sams Creek, Main Zone

Quartz-sulfide veins in silicified microgranite

8992

1598

398.00

331

−47.5

250.00

SC25 203.5

Sams Creek, Main Zone

Quartz-sulfide veins in silicified microgranite

8992

1598

398.00

331

−47.5

250.00

SC25 218.5

Sams Creek, Main Zone

Phyllite

8992

1598

398.00

331

−47.5

250.00

SC26 101.1

Sams Creek, Main Zone

Sulphide vein in granite

9008

1598

231.53

-

−90.0

200.20

SC26 121.8

Sams Creek, Main Zone

Sulphide vein in granite

9008

1614

232.53

-

−90.0

200.20

SC29 29.8

Sams Creek, Main Zone

Quartz-sulfide veins in silicified microgranite

8788

1677

811.00

241

−45.0

121.10

SC29 30.7

Sams Creek, Riordans

Porphyry granite

8788

1677

811.00

241

−45.0

121.10

SC29 41.3

Sams Creek, Riordans

Quartz-sulfide veins in microgranite

8788

1677

811.00

241

−45.0

121.10

SC29 45.8

Sams Creek, Riordans

Quartz-sulfide veins in microgranite

8788

1677

811.00

241

−45.0

121.10

SC29 46.1

Sams Creek, Riordans

Quartz-sulfide veins in microgranite

8788

1677

811.00

241

−45.0

121.10

SC29 56.5

Sams Creek, Riordans

Quartz-sulfide veins in microgranite

8788

1677

811.00

241

−45.0

121.10

SC29 61.8

Sams Creek, Riordans

Cataclasite at metasediment/microgranite contact

8788

1677

811.00

241

−45.0

121.10

SC29 118.3

Sams Creek, Riordans

Quartz vein in metapelite

8788

1677

811.00

241

−45.0

121.10

SC29 120.5

Sams Creek, Riordans

Quartz-carbonate vein in metapelite

8788

1677

811.00

241

−45.0

121.10

SC29 120.9

Sams Creek, Riordans

Metapelite

8788

1677

811.00

241

−45.0

121.10

SC32 16.8

Sams Creek, SE Traverse

Quartz-sulfide veins in microgranite

8947

1529

505.00

151

−45.0

91.20

SC36 10.7

Sams Creek, Main Zone

Sulphide vein in granite

9012

1614

245.44

151

−45.0

203.00

SC36 26.2

Sams Creek, Main Zone

Porphyry granite

9012

1614

245.44

151

−45.0

203.00

SC37 94.3

Sams Creek, Doyles

Quartz-sulfide veins in sericite-altered microgranite

8893

1564

740.00

151

−65.0

142.80

SC37 94.4

Sams Creek, Doyles

Quartz-sulfide veins in sericite-altered microgranite

8893

1564

740.00

151

−65.0

142.80

SC37 95.5

Sams Creek, Doyles

Quartz-sulfide veins in sericite-altered microgranite

8893

1564

740.00

151

−65.0

142.80

SC37 88.5

Sams Creek, Doyles

Microgranite, sericite altered

8893

1564

740.00

151

−65.0

142.80

SC37 102.6

Sams Creek, Doyles

Porphyry granite

8893

1564

740.00

151

−65.0

142.80

SC37 104.0

Sams Creek, Doyles

Quartz-sulfide veins in sericite-altered microgranite

8893

1564

740.00

151

−65.0

142.80

SC37 108.6

Sams Creek, Doyles

Silicified microgranite

8893

1564

740.00

151

−65.0

142.80

SC38 7.3

Sams Creek, Doyles

Quartz-carbonate-sulfide veins in sericite-altered microgranite

8880

1562

735.00

201

−65.0

115.20

SC38 7.6

Sams Creek, Doyles

Quartz-sulfide veins in sericite-altered microgranite

8880

1562

735.00

201

−65.0

115.20

SC38 4.6

Sams Creek, Doyles

Microgranite, sericite altered

8880

1562

735.00

201

−65.0

115.20

SC38 17.5

Sams Creek, Doyles

Microgranite with disseminated carbonate

8880

1562

735.00

201

−65.0

115.20

SC39 29.6

Sams Creek, Main Zone

Quartz-sulfide veins in altered microgranite

8841

1608

787.00

241

−65.0

219.00

SC39 31.1

Sams Creek, Main Zone

Quartz-sulfide veins in altered microgranite

8841

1608

787.00

241

−65.0

219.00

SC39 39.2

Sams Creek, Western Outcrops

Porphyry granite

8841

1608

787.00

241

−65.0

219.00

SC39 47.0

Sams Creek, Main Zone

Quartz-sulfide veins in sericite-altered microgranite

8841

1608

787.00

241

−65.0

219.00

SC39 50.3

Sams Creek, Main Zone

Porphyry granite

8841

1608

787.00

241

−65.0

219.00

SC39 52.5

Sams Creek, Main Zone

Quartz-sulfide veins in silicified microgranite

8841

1608

787.00

241

−65.0

219.00

SC39 54.7

Sams Creek, Main Zone

Quartz-carbonate veins in silicified microgranite

8841

1608

787.00

241

−65.0

219.00

SC40 95.9

Sams Creek, Main Zone

Quartz-chlorite-carbonate vein in metasandstone

9030

1616

327.00

241

−65.0

195.80

SC40 104.0

Sams Creek, Main Zone

Quartz-carbonate vein in metasandstone

9030

1616

327.00

241

−65.0

195.80

SC40 105.5

Sams Creek, Main Zone

Quartz vein in metasandstone

9030

1616

327.00

241

−65.0

195.80

SC40 108.9

Sams Creek, Main Zone

Metasandstone with metapelite beds

9030

1616

327.00

241

−65.0

195.80

SC40 109.3

Sams Creek, Main Zone

Carbonate-chlorite altered lamprophyre

9030

1616

327.00

241

−65.0

195.80

SC40 109.6

Sams Creek, Main Zone

Carbonate-chlorite altered lamprophyre

9030

1616

327.00

241

−65.0

195.80

SC40 109.8

Sams Creek, Main Zone

Carbonate-chlorite altered lamprophyre

9030

1616

327.00

241

−65.0

195.80

SC40 111.2

Sams Creek, Main Zone

Hornfels/microgranite contact

9030

1616

327.00

241

−65.0

195.80

SC40 113.55

Sams Creek, Main Zone

Magnetite altered microgranite

9030

1616

327.00

241

−65.0

195.80

SC40 115.45

Sams Creek, Main Zone

Porphyry granite

9030

1616

327.00

241

−65.0

195.80

SC40 117.0

Sams Creek, Main Zone

Sulfide veins in silicified microgranite

9030

1616

327.00

241

−65.0

195.80

SC40 121.6

Sams Creek, Main Zone

Carbonate-quartz vein in granite

9030

1616

327.00

241

−65.0

195.80

SC40 121.7

Sams Creek, Main Zone

Quartz vein in granite

9030

1616

327.00

241

−65.0

195.80

SC40 122.3

Sams Creek, Main Zone

Metapelite contact with carbonate altered lamprophyre

9030

1616

327.00

241

−65.0

195.80

SC40 138.2

Sams Creek, Main Zone

Quartz vein in granite

9030

1616

327.00

241

−65.0

195.80

SC40 139.0

Sams Creek, Main Zone

Sulfide veins in silicified microgranite

9030

1616

327.00

241

−65.0

195.80

SC40 142.9

Sams Creek, Main Zone

Porphyry granite

9030

1616

327.00

241

−65.0

195.80

SC40 151.6

Sams Creek, Main Zone

Porphyry granite

9030

1616

327.00

241

−65.0

195.80

SC40 154.5

Sams Creek, Main Zone

Carbonate-altered granite

9030

1616

327.00

241

−65.0

195.80

SC40 155.0

Sams Creek, Main Zone

Carbonate-chlorite altered lamprophyre

9030

1616

327.00

241

−65.0

195.80

SC42 195.5

Sams Creek, Anvil

Silicified microgranite with sulfide and carbonate blebs

9051

1611

220.00

310

−50.0

288.00

SC42 186.4

Sams Creek, Anvil

Sulfide veins in silicified microgranite

9051

1611

220.00

310

−50.0

288.00

SC42 199.5

Sams Creek, Anvil

Quartz veins in magnetite-altered microgranite

9051

1611

220.00

310

−50.0

288.00

SC42 209.9

Sams Creek, Anvil

Sulfide veins in silicified microgranite

9051

1611

220.00

310

−50.0

288.00

SC42 210.3

Sams Creek, Anvil

Sulfide veins in silicified microgranite

9051

1611

220.00

310

−50.0

288.00

SC42 216.7

Sams Creek, Anvil

Quartz veins in magnetite-altered microgranite

9051

1611

220.00

310

−50.0

288.00

SC42 222.6

Sams Creek, Anvil

Silicified microgranite with sulfide and carbonate blebs

9051

1611

220.00

310

−50.0

288.00

SC42 223.1

Sams Creek, Anvil

Silicified microgranite with sulfide and carbonate blebs

9051

1611

220.00

310

−50.0

288.00

SC42 229.2

Sams Creek, Anvil

Silicified microgranite with sulfide and carbonate blebs

9051

1611

220.00

310

−50.0

288.00

SC42 237.7

Sams Creek, Anvil

Silicified microgranite with sulfide and carbonate blebs

9051

1611

220.00

310

−50.0

288.00

SC42 246.8

Sams Creek, Anvil

Silicified microgranite with sulfide and carbonate blebs

9051

1611

220.00

310

−50.0

288.00

SC42 251.1

Sams Creek, Anvil

Silicified microgranite with sulfide and carbonate blebs

9051

1611

220.00

310

−50.0

288.00

SC42 256.4

Sams Creek, Anvil

Sulfide veins in silicified microgranite

9051

1611

220.00

310

−50.0

288.00

SC42 258.4

Sams Creek, Anvil

Silicified microgranite with sulfide and carbonate blebs

9051

1611

220.00

310

−50.0

288.00

SC42 285.7

Sams Creek, Anvil

Carbonate-chlorite-sericite altered lamprophyre

9051

1611

220.00

310

−50.0

288.00

SC43 12.0

Sams Creek, Main Zone

Pyritic metapelite

8982

1590

461.00

344

−57.0

129.40

SC43 61.5

Sams Creek, Main Zone

Carbonate veins in silicified microgranite

8982

1590

461.00

344

−57.0

129.40

SC43 46.0

Sams Creek, Main Zone

Silicified microgranite

8982

1590

461.00

344

−57.0

129.40

SC43 62.1

Sams Creek, Main Zone

Magnetite altered microgranite

8982

1590

461.00

344

−57.0

129.40

SC43 73.8

Sams Creek, Main Zone

Quartz-carbonate vein in silicified microgranite

8982

1590

461.00

344

−57.0

129.40

SC43 96.0

Sams Creek, Main Zone

Carbonate veins in silicified microgranite

8982

1590

461.00

344

−57.0

129.40

SC43 98.6

Sams Creek, Main Zone

Carbonate-chlorite altered lamprophyre

8982

1590

461.00

344

−57.0

129.40

SC43 113.3

Sams Creek, Main Zone

Pyritic metapelite

8982

1590

461.00

344

−57.0

129.40

SC43 114.0

Sams Creek, Main Zone

Pyritic metapelite

8982

1590

461.00

344

−57.0

129.40

SC43 115.9

Sams Creek, Main Zone

Quartz vein in metapelite

8982

1590

461.00

344

−57.0

129.40

SC43 121.0

Sams Creek, Main Zone

Pyritic metapelite

8982

1590

461.00

344

−57.0

129.40

SC44 136.5

Sams Creek, Main Zone

Metapelite with bedded pyrite

9008

1622

230.00

331

−73.0

329.30

SC44 173.3

Sams Creek, Main Zone

Carbonate-chlorite altered lamprophyre with carbonate veinlets

9008

1622

230.00

331

−73.0

329.30

SC44 174.2

Sams Creek, Main Zone

Silicified microgranite with sulphide and carbonate veinlets

9008

1622

230.00

331

−73.0

329.30

SC44 179.3

Sams Creek, Main Zone

Carbonate-chlorite altered lamprophyre

9008

1622

230.00

331

−73.0

329.30

SC44 184.6

Sams Creek, Main Zone

Silicified microgranite with sulphide and carbonate veinlets

9008

1622

230.00

331

−73.0

329.30

SC44 186.9

Sams Creek, Main Zone

Silicified microgranite with sulphide and carbonate veinlets

9008

1622

230.00

331

−73.0

329.30

SC44 195.7

Sams Creek, Main Zone

Silicified microgranite with sulphide and carbonate veinlets

9008

1622

230.00

331

−73.0

329.30

SC44 197.7

Sams Creek, Main Zone

Sericite-carbonate altered microgranite with quartz and sulphide veinlets

9008

1622

230.00

331

−73.0

329.30

SC44 226.3

Sams Creek, Main Zone

Arsenopyrite vein in silicified microgranite

9008

1622

230.00

331

−73.0

329.30

SC44 234.0

Sams Creek, Main Zone

Arsenopyrite-pyrite veinlets in silicified microgranite

9008

1622

230.00

331

−73.0

329.30

SC44 246.8

Sams Creek, Main Zone

Arsenopyrite vein with fringe of black ?sulphide in silicified microgranite

9008

1622

230.00

331

−73.0

329.30

SC44 251.6

Sams Creek, Main Zone

Arsenopyrite-pyrite veinlets in silicified microgranite

9008

1622

230.00

331

−73.0

329.30

SC44 276.0

Sams Creek, Main Zone

Arsenopyrite-pyrite veinlets in silicified microgranite

9008

1622

230.00

331

−73.0

329.30

SC44 276.2

Sams Creek, Main Zone

carbonate + feldspar vein in silicfied microgranite

9008

1622

230.00

331

−73.0

329.30

SC44 318.2

Sams Creek, Main Zone

Cemented fault breccia with clasts of lamprophyre and metapelite

9008

1622

230.00

331

−73.0

329.30

SC44 327.0

Sams Creek, Main Zone

Metapelite with disseminated pyrite

9008

1622

230.00

331

−73.0

329.30

SC45 54.2

Sams Creek, Main Zone

Metasandstone with carbonate alteration

9008

1622

231.00

91

−60.0

148.85

SC45 63.8

Sams Creek, Main Zone

Carbonate-chlorite-sericite altered lamprophyre

9008

1622

231.00

91

−60.0

148.85

SC45 65.2

Sams Creek, Main Zone

Carbonate-chlorite altered lamprophyre

9008

1622

231.00

91

−60.0

148.85

SC45 67.3

Sams Creek, Main Zone

Carbonate veinlets in silicified microgranite

9008

1622

231.00

91

−60.0

148.85

SC45 69.7

Sams Creek, Main Zone

Arsenopyrite vein cut by pyrite veinlets in silicified microgranite

9008

1622

231.00

91

−60.0

148.85

SC45 72.6

Sams Creek, Main Zone

Sericite-quartz alteration replacing magnetite alteration

9008

1622

231.00

91

−60.0

148.85

SC45 92.0

Sams Creek, Main Zone

Arsenopyrite-pyrite veinlets in silicified microgranite

9008

1622

231.00

91

−60.0

148.85

SC45 93.6

Sams Creek, Main Zone

Arsenopyrite-pyrite veinlets in silicified microgranite

9008

1622

231.00

91

−60.0

148.85

SC45 112.1

Sams Creek, Main Zone

Contact carbonate-rich lamprophyre/silicfied granite with pyrite veinlets

9008

1622

231.00

91

−60.0

148.85

SC45 112.2

Sams Creek, Main Zone

Carbonate-chlorite altered lamprophyre

9008

1622

231.00

91

−60.0

148.85

SC45 112.8

Sams Creek, Main Zone

Carbonate-chlorite-sericite altered lamprophyre

9008

1622

231.00

91

−60.0

148.85

SC45 115.6

Sams Creek, Main Zone

Carbonate-rich lamprophyre cutting metapelite

9008

1622

231.00

91

−60.0

148.85

SC45 118.1

Sams Creek, Main Zone

Breccia with clasts of metapelite, vein quartz and pyrite

9008

1622

231.00

91

−60.0

148.85

SC45 119.0

Sams Creek, Main Zone

Quartz vein in metapelite

9008

1622

231.00

91

−60.0

148.85

SC48 187.15

Sams Creek, Main Zone

Quartz vein

9030

1616

329.80

312

−75.0

248.70

SC48 187.2

Sams Creek, Main Zone

Contact carbonate-rich lamprophyre/silicfied microgranite

9030

1616

329.80

312

−75.0

248.70

SC48 190.2

Sams Creek, Main Zone

Carbonate vein in silicified microgranite

9030

1616

329.80

312

−75.0

248.70

SC48 190.4

Sams Creek, Main Zone

Sphalerite in sulphide vein in silicified microgranite

9030

1616

329.80

312

−75.0

248.70

SC48 198.4

Sams Creek, Main Zone

Arsenopyrite-pyrite veinlets in silicified microgranite

9030

1616

329.80

312

−75.0

248.70

SC48 201.4

Sams Creek, Main Zone

Silicified microgranite veined with quartz, sulphide and carbonate

9030

1616

329.80

312

−75.0

248.70

SC48 203.4

Sams Creek, Main Zone

Sericite-rich microgranite veined with quartz, sulphide and carbonate

9030

1616

329.80

312

−75.0

248.70

SC48 206.8

Sams Creek, Main Zone

Arsenopyrite-pyrite veinlets in silicified microgranite

9030

1616

329.80

312

−75.0

248.70

SC48 207.7

Sams Creek, Main Zone

Magnetite altered microgranite with quartz veinlets

9030

1616

329.80

312

−75.0

248.70

SC48 221.3

Sams Creek, Main Zone

Arsenopyrite-pyrite veinlets in silicified microgranite

9030

1616

329.80

312

−75.0

248.70

SC48 222.0

Sams Creek, Main Zone

Carbonate veinlets in silicified microgranite

9030

1616

329.80

312

−75.0

248.70

SC48 228.3

Sams Creek, Main Zone

Carbonate-chlorite altered lamprophyre with quartz-carbonate-sulphide veinlets

9030

1616

329.80

312

−75.0

248.70

SC48 228.3

Sams Creek, Main Zone

Carbonate-chlorite altered lamprophyre with quartz-carbonate-sulphide veinlets

9030

1616

329.80

312

−75.0

248.70

SC48 240.2

Sams Creek, Main Zone

Metapelite with quartz-pyrite veinlets

9030

1616

329.80

312

−75.0

248.70

Outcop Samples

P68911

Sams Creek, Main Zone

Silicified microgranite

8980

1580

    

P68912

Sams Creek, Anvil

Porphyry granite

9120

1620

    

P68913

Sams Creek, Barrons Flat

Porphyry granite

9260

1660

    

P68914

Sams Creek, Barrons Flat

Porphyry granite

9210

1610

    

P68915

Cobb Dam Road

Devil River Group; greenschist, sulfide-rich

8770

1350

    

CN 1078

Arthur Marble

Metamorphosed marine carbonate with trace pyrite

Locality indicated on Fig. 1

     

CN 1079

Arthur Marble

Metamorphosed marine carbonate with trace pyrite

Locality indicated on Fig. 1

     

CN 632

Arthur Marble

Metamorphosed marine carbonate with trace pyrite

Locality indicated on Fig. 1

     

CN 652

Arthur Marble

Metamorphosed marine carbonate with trace pyrite

Locality indicated on Figure 1

     

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faure, K., Brathwaite, R.L. Mineralogical and stable isotope studies of gold–arsenic mineralisation in the Sams Creek peralkaline porphyritic granite, South Island, New Zealand. Miner Deposita 40, 802–827 (2006). https://doi.org/10.1007/s00126-005-0013-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-005-0013-y

Keywords

Navigation