Skip to main content
Log in

Role of islet amyloid polypeptide secretion in insulin-resistant humans

  • Published:
Diabetologia Aims and scope Submit manuscript

Summary

Although it is generally accepted that islet amyloid polypeptide is cosecreted with insulin, relatively few data on its kinetics are available. We therefore studied the dynamics of islet amyloid polypeptide release following oral and frequently sampled intravenous glucose tolerance tests in comparison to insulin and C-peptide using mathematical model techniques in 14 control subjects, 10 obese and 11 hyper-tensive patients. The fractional clearance rate of islet amyloid polypeptide (0.034 ±0.004 min−1 in control subjects, 0.058 ± 0.008 in the obese and 0.050 ± 0.008 in the hypertensive patients) was significantly different (p < 0.01) in each group compared with that of insulin (0.14 ± 0.03 min−1) and similar to that of C-peptide (0.061 ± 0.007 min−1), at least in the insulin-resistant subjects. Based on the insulin sensitivity index derived from the minimal model analysis of intravenous glucose tolerance test data, both the hypertensive (2.4 ±0.4 min−1/(μU/ml); p < 0.0005) and the obese (2.7 ±0.5; p < 0.001) patients demonstrated severe insulin resistance compared to control subjects (8.1 ± 1.3). Marked insulin hypersecretion was found in the hypertensive (57.6 ± 5.2 nmol · 1−1 in 180 min; p < 0.001) and obese (60.8 ± 10.1; p < 0.003) patients in comparison with control subjects (32.4 ± 3.2). The release of islet amyloid polypeptide was significantly higher in the hypertensive (83.1 ± 16.6 pmol/1 in 180 min; p < 0.02) and obese (78.6 ± 13.1; p < 0.005) patients than in control subjects (40.5 ± 6.4). No correlation was found between islet amyloid polypeptide release and the insulin sensitivity index in any group. We conclude that, due to a significantly slower clearance of islet amyloid polypeptide in comparison to insulin, reliance on molar ratios between these two peptides might be misleading in the interpretation of islet amy-loid polypeptide secretion especially under non-steady-state conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kahn S, D’Alessio DA, Schwartz MW et al. (1990) Evidence of cosecretion of islet amyloid polypeptide and insulin by B cells. Diabetes 39: 634–638

    Article  PubMed  CAS  Google Scholar 

  2. Sowa R, Sanke T, Hirayama J et al. (1990) Islet amyloid polypeptide amide causes peripheral insulin resistance in vivo in dogs. Diabetologia 33: 118–120

    Article  PubMed  CAS  Google Scholar 

  3. Huang HJS, Young AA, Koda JE, Tulp OL, Johnson MJ, Cooper GJS (1992) Hyperamylinemia, hyperinsulinemia, and insulin resistance in genetically obese LA/N-cp rats. Hypertension 19[Suppl I]: 101–109

    Google Scholar 

  4. Cooper GJS, Leighton B, Dimitriadis G et al. (1988) Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. Proc Natl Acad Sci USA 85: 7763–7766

    Article  PubMed  CAS  Google Scholar 

  5. Molina JM, Cooper GJS, Leighton B, Olefsky JM (1992) Induction of insulin resistance in vivo by amylin and calcitonin gene related peptide. Diabetes 39: 260–265

    Article  Google Scholar 

  6. Leighton B, Cooper GJS (1988) Pancreatic amylin and calcitonin gene related peptide cause resistance to insulin in skeletal muscle in vitro. Nature 335: 632–635

    Article  PubMed  CAS  Google Scholar 

  7. Koopmans SJ, van Mansfeld ADM, Jansz HS et al. (1991) Amylin induced in vivo insulin resistance in conscious rats: the liver is more sensitive to amylin than peripheral tissues. Diabetologia 34: 218–224

    Article  PubMed  CAS  Google Scholar 

  8. Frontoni S, Choi SB, Banduch D, Rossetti L (1991) In vivo insulin resistance induced by amylin primarily through inhibition of insulin stimulated glycogen synthesis in skeletal muscle. Diabetes 40: 568–573

    Article  PubMed  CAS  Google Scholar 

  9. Ohsawa H, Kanatsuka A, Yamaguchi T, Makino H, Yoshida S (1989) Islet amyloid polypeptide inhibits glucose-stimulated insulin secretion from isolated rat pancreatic islets. Biochem Biophys Res Commun 160: 961–967

    Article  PubMed  CAS  Google Scholar 

  10. Kassir AA, Upadhyay AK, Lim TJ, Moossa AR, Olefsky JM (1991) Lack of effect of islet amyloid polypeptide to cause insulin resistance in conscious dogs during euglycemic clamp studies. Diabetes 40: 998–1004

    Article  PubMed  CAS  Google Scholar 

  11. Ludvik B, Lell B, Hartter E, Schnack C, Prager R (1991) Decrease of stimulated amylin release precedes impairment of insulin secretion in type 2 diabetes. Diabetes 40: 1615–1619

    Article  PubMed  CAS  Google Scholar 

  12. Sanke T, Hanabusa T, Nakano Y et al. (1991) Plasma islet amyloid polypeptide (amylin) levels and their response to oral glucose in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 34: 129–132

    Article  PubMed  CAS  Google Scholar 

  13. Johnson KH, O’Brien TD, Jordan K, Westermark P (1989) Impaired glucose tolerance is associated with increased islet amyloid polypeptide (IAPP) immunoreactivity in pancreatic beta cells. Am J Pathol 135: 245–250

    PubMed  CAS  Google Scholar 

  14. Ludvik B, Clodi M, Kautzky-Willer A et al. (1993) Effect of dexamethasone on insulin sensitivity, islet amyloid polypeptide and insulin secretion in humans. Diabetologia 36: 84–87

    Article  PubMed  CAS  Google Scholar 

  15. Westermark P, Johnson KH, O’Brien TD, Betsholtz C (1992) Islet amyloid polypeptide — a novel controversy in diabetes research. Diabetologia 35: 297–303

    Article  PubMed  CAS  Google Scholar 

  16. Inoue K, Hisatomi A, Umeda F, Nawata H (1992) Relative hypersecretion of amylin to insulin from rat pancreas after neonatal STZ treatment. Diabetes 41: 723–727

    Article  PubMed  CAS  Google Scholar 

  17. Hartter E, Svoboda T, Ludvik B et al. (1991) Basal and stimulated plasma levels of pancreatic amylin indicate its cosecretion with insulin in humans. Diabetologia 34: 52–54

    Article  PubMed  CAS  Google Scholar 

  18. Hartter E, Svoboda T, Ludvik B et al. (1990) Reduced islet amyloid polypeptide in insulin dependent diabetes mellitus. Lancet I: 854

    Article  Google Scholar 

  19. Pacini G, Bergman RN (1986) MINMOD: computer program to calculate insulin sensitivity and pancreatic responsivity from the frequently sampled intraveneous glucose tolerance test. Comp Meth Progr Biomed 23: 113–122

    Article  CAS  Google Scholar 

  20. Bergman RN, Prager R, Volund A, Olefsky J (1987) Equivalence of the insulin sensitivity index in man derived by the minimal model method and the euglycemic glucose clamp. J Clin Invest 79: 790–800

    Article  PubMed  CAS  Google Scholar 

  21. Bergman RN, Phillips LS, Cobelli C (1981) Physiologic evaluation of factors controlling glucose tolerance in man. J Clin Invest 68: 1456–1467

    Article  PubMed  CAS  Google Scholar 

  22. Ferrannini E, Cobelli C (1987) The kinetics of insulin in man. Diabetes Metab Rev 3: 365–397

    PubMed  CAS  Google Scholar 

  23. Polonsky KS, Rubenstein AH (1984) C-peptide as a measure of the secretion and hepatic extraction of insulin: pitfalls and limitations. Diabetes 33: 486–494

    Article  PubMed  CAS  Google Scholar 

  24. Carson ER, Cobelli C, Finkelstein L (1983) The mathematical modeling of metabolic and endocrine systems. Wiley, New York

    Google Scholar 

  25. Eaton RP, Allen RC, Shade DS, Erickson KM, Standefer J (1980) Prehepatic insulin production in man: kinetic analysis using peripheral connecting peptide behaviour. J Clin Endocrinol Metab 51: 520–528

    PubMed  CAS  Google Scholar 

  26. Polonsky K, Licinio-Paixao J, Given BD et al. (1986) Use of biosynthetic human C-peptide in the measurement of insulin secretion rates in normal volunteers and type I diabetic patients. J Clin Invest 77: 98–105

    Article  PubMed  CAS  Google Scholar 

  27. Volund A, Polonsky KS, Bergman RN (1987) Calculated pattern of intraportal insulin appearance without independent assessment of C-peptide kinetics. Diabetes 36: 1195–1202

    Article  PubMed  CAS  Google Scholar 

  28. Cobelli C, Pacini G (1988) Insulin secretion and hepatic extraction in humans by minimal modeling of C-peptide and insulin kinetics. Diabetes 37: 223–231

    Article  PubMed  CAS  Google Scholar 

  29. Cobelli C, Thomaseth K (1988) On the optimality of the impulse input for linear system identification. Math Biosc 89: 127–133

    Article  Google Scholar 

  30. Watanabe RM, Volund A, Roy S, Bergman RN (1989) Prehepatic β-cell secretion during the intravenous glucose tolerance test in humans: application of a combined model of insulin and C-peptide kinetics. J Clin Endocrinol Metab 69: 790–797

    Article  PubMed  CAS  Google Scholar 

  31. Kautzky-Willer A, Pacini G, Weissel M, Capek M, Ludvik B, Prager R (1993) Elevated hepatic insulin extraction in essential hypertension. Hypertension 21: 646–653

    PubMed  CAS  Google Scholar 

  32. Kautzky-Willer A, Pacini G, Ludvik B, Schernthaner G, Prager R (1992) Beta-cell hypersecretion and not reduced hepatic insulin extraction is mainly responsible for hyper-insulinemia in obese nondiabetic subjects. Metabolism 41: 1304–1312

    Article  PubMed  CAS  Google Scholar 

  33. de Boor C (1978) A practical guide to splines. Springer Verlag, New York

    Google Scholar 

  34. Thomaseth K (1993) PANSYM: a symbolic equation generator for mathematical modelling, analysis and control of metabolic and pharmacokinetic systems. Comput Methods Programs Biomed (in press)

  35. Fehmann HC, Weber V, Göke R, Göke B, Arnold R (1990) Cosecretion of amylin and insulin from isolated rat pancreas. FEBS Lett 262: 279–281

    Article  PubMed  CAS  Google Scholar 

  36. Kahn SE, Fujimoto WY, D’Alessio DA, Ensinck JW, Porte D (1991) Glucose stimulates and potentiates islet amyloid polypeptide secretion by the B-cell. Horm Metab Res 23: 577–580

    Article  PubMed  CAS  Google Scholar 

  37. Mitzukawa T, Takemura J, Asai J et al. (1990) Islet amyloid polypeptide response to glucose, insulin, and somatostatin analogue administration. Diabetes 39: 639–642

    Article  Google Scholar 

  38. Inoue K, Hisatomi A, Umeda F, Nawata H (1992) Effects of exogenous somatostatin and insulin on islet amyloid polypeptide (amylin) release from perfused rat pancreas. Horm Metab Res 24: 251–253

    Article  PubMed  CAS  Google Scholar 

  39. O’Brien TD, Westermark P, Johnson KH (1991) Islet amy-loid polypeptide and insulin secretion from isolated perfused pancreas of fed, fasted, glucose-treated and dexamethasone-treated rats. Diabetes 40: 1701–1706

    Article  PubMed  Google Scholar 

  40. Stephens TW, Heath WF, Hermeling RN (1991) Presence of liver CGRP/amylin receptors in only nonparenchymal cells and absence of direct regulation of rat liver glucose metabolism by CGRP/amylin. Diabetes 40: 395–400

    Article  PubMed  CAS  Google Scholar 

  41. Roden M, Liener K, Fürnsinn C et al. (1992) Effects of islet amyloid polypeptide on hepatic insulin resistance and glucose production in the isolated perfused rat liver. Diabetologia 35: 116–120

    Article  PubMed  CAS  Google Scholar 

  42. Ludvik B, Berzlanovich A, Harrter E, Lell B, Prager R, Graf H (1990) Increased amylin levels in patients on chronic hemodialysis. Nephrol Dial Transplant 8: 694 A-695 A

    Google Scholar 

  43. Stokholm KH, Broechner-Mortensen J, Hoilund-Carlsen PF (1980) Increased glomerular filtration rate and adrenocortical function in obese women. Int J Obes 4: 57–63

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kautzky-Willer, A., Thomaseth, K., Pacini, G. et al. Role of islet amyloid polypeptide secretion in insulin-resistant humans. Diabetologia 37, 188–194 (1994). https://doi.org/10.1007/s001250050092

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001250050092

Key words

Navigation