Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS (1993) Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36(1):62–67. https://doi.org/10.1007/BF00399095
CAS
Article
PubMed
Google Scholar
Hales CN, Barker DJ, Clark PM et al (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303(6809):1019–1022
CAS
Article
Google Scholar
Harder T, Rodekamp E, Schellong K, Dudenhausen JW, Plagemann A (2007) Birth weight and subsequent risk of type 2 diabetes: a meta-analysis. Am J Epidemiol 165(8):849–857. https://doi.org/10.1093/aje/kwk071
Article
PubMed
Google Scholar
Hales CN, Barker DJP (2001) The thrifty phenotype hypothesis. Br Med Bull 60(1):5–20. https://doi.org/10.1093/bmb/60.1.5
CAS
Article
PubMed
Google Scholar
Gluckman PD, Hanson MA (2004) Living with the past: evolution, development, and patterns of disease. Science 305(5691):1733–1736. https://doi.org/10.1126/science.1095292
CAS
Article
PubMed
Google Scholar
Hattersley AT, Beards F, Ballantyne E, Appleton M, Harvey R, Ellard S (1998) Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nat Genet 19(3):268–270. https://doi.org/10.1038/953
CAS
Article
PubMed
Google Scholar
Hattersley AT, Tooke JE (1999) The fetal insulin hypothesis: an alternative explanation of the association of low birthweight with diabetes and vascular disease. Lancet 353(9166):1789–1792. https://doi.org/10.1016/S0140-6736(98)07546-1
CAS
Article
PubMed
Google Scholar
Pedersen J (1952) Diabetes and pregnancy: blood sugar of newborn infants during fasting and glucose administration. Danish Science Press, Copenhagen, pp 230 (Ph. D. thesis)
Fernandez-Twinn DS, Hjort L, Novakovic B, Ozanne SE, Saffery R (2019) Intrauterine programming of obesity and type 2 diabetes. Diabetologia 62(10):1789–1801. https://doi.org/10.1007/s00125-019-4951-9
Article
PubMed
PubMed Central
Google Scholar
Stride A, Vaxillaire M, Tuomi T et al (2002) The genetic abnormality in the beta cell determines the response to an oral glucose load. Diabetologia 45(3):427–435. https://doi.org/10.1007/s00125-001-0770-9
CAS
Article
PubMed
Google Scholar
Steele AM, Wensley KJ, Ellard S et al (2013) Use of HbA1c in the Identification of Patients with Hyperglycaemia Caused by a Glucokinase Mutation: Observational Case Control Studies. PLoS One 8(6). https://doi.org/10.1371/journal.pone.0065326
Caswell RC, Snowsill T, Houghton JAL et al (2020) Noninvasive Fetal Genotyping by Droplet Digital PCR to Identify Maternally Inherited Monogenic Diabetes Variants. Clin Chem 66(7):958–965. https://doi.org/10.1093/clinchem/hvaa104
Article
PubMed
Google Scholar
Gloyn AL, Pearson ER, Antcliff JF et al (2004) Activating Mutations in the Gene Encoding the ATP-Sensitive Potassium-Channel Subunit Kir6.2 and Permanent Neonatal Diabetes. N Engl J Med 350(18):1838–1849. https://doi.org/10.1056/NEJMoa032922
CAS
Article
PubMed
Google Scholar
Proks P, Arnold AL, Bruining J et al (2006) A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Hum Mol Genet 15(11):1793–1800. https://doi.org/10.1093/hmg/ddl101
CAS
Article
PubMed
Google Scholar
Flanagan SE, Patch A-M, Mackay DJG et al (2007) Mutations in ATP-Sensitive K+ Channel Genes Cause Transient Neonatal Diabetes and Permanent Diabetes in Childhood or Adulthood. Diabetes 56(7):1930–1937. https://doi.org/10.2337/db07-0043
CAS
Article
PubMed
Google Scholar
Slingerland AS, Hattersley AT (2006) Activating mutations in the gene encoding Kir6.2 alter fetal and postnatal growth and also cause neonatal diabetes. J Clin Endocrinol Metab 91(7):2782–2788. https://doi.org/10.1210/jc.2006-0201
CAS
Article
PubMed
Google Scholar
Garin I, Edghill EL, Akerman I et al (2010) Recessive mutations in the INS gene result in neonatal diabetes through reduced insulin biosynthesis. Proc Natl Acad Sci USA 107(7):3105–3110. https://doi.org/10.1073/pnas.0910533107
Article
PubMed
Google Scholar
De Franco E, Watson RA, Weninger WJ et al (2019) A Specific CNOT1 Mutation Results in a Novel Syndrome of Pancreatic Agenesis and Holoprosencephaly through Impaired Pancreatic and Neurological Development. Am J Hum Genet 104(5):985–989. https://doi.org/10.1016/j.ajhg.2019.03.018
CAS
Article
PubMed
PubMed Central
Google Scholar
Shaw-Smith C, De Franco E, Allen HL et al (2014) GATA4 Mutations Are a Cause of Neonatal and Childhood-Onset Diabetes. Diabetes 63(8):2888–2894. https://doi.org/10.2337/db14-0061
CAS
Article
PubMed
PubMed Central
Google Scholar
Allen HL, Flanagan SE, Shaw-Smith C et al (2012) GATA6 haploinsufficiency causes pancreatic agenesis in humans. Nat Genet 44(1):20–22. https://doi.org/10.1038/ng.1035
CAS
Article
Google Scholar
Stoffers DA, Zinkin NT, Stanojevic V, Clarke WL, Habener JF (1997) Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat Genet 15(1):106–110. https://doi.org/10.1038/ng0197-106
CAS
Article
PubMed
Google Scholar
Weedon MN, Cebola I, Patch A-M et al (2014) Recessive mutations in a distal PTF1A enhancer cause isolated pancreatic agenesis. Nat Genet 46(1):61–64. https://doi.org/10.1038/ng.2826
CAS
Article
PubMed
Google Scholar
Houghton JAL, Swift GH, Shaw-Smith C et al (2016) Isolated Pancreatic Aplasia Due to a Hypomorphic PTF1A Mutation. Diabetes 65(9):2810–2815. https://doi.org/10.2337/db15-1666
CAS
Article
PubMed
PubMed Central
Google Scholar
De Franco E, Flanagan SE, Houghton JA et al (2015) The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet 386(9997):957–963. https://doi.org/10.1016/S0140-6736(15)60098-8
Fowden AL, Forhead AJ (2009) Endocrine Regulation of Feto-Placental Growth. Horm Res Paediatr 72(5):257–265. https://doi.org/10.1159/000245927
CAS
Article
Google Scholar
Byrne MM, Sturis J, Fajans SS et al (1995) Altered insulin secretory responses to glucose in subjects with a mutation in the MODY1 gene on chromosome 20. Diabetes 44(6):699–704. https://doi.org/10.2337/diab.44.6.699
CAS
Article
PubMed
Google Scholar
Byrne MM, Sturis J, Menzel S et al (1996) Altered Insulin Secretory Responses to Glucose in Diabetic and Nondiabetic Subjects With Mutations in the Diabetes Susceptibility Gene MODY3 on Chromosome 12. Diabetes 45(11):1503–1510. https://doi.org/10.2337/diab.45.11.1503
CAS
Article
PubMed
Google Scholar
Pearson ER, Pruhova S, Tack CJ et al (2005) Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4α mutations in a large European collection. Diabetologia 48(5):878–885. https://doi.org/10.1007/s00125-005-1738-y
CAS
Article
PubMed
Google Scholar
Pearson ER, Boj SF, Steele AM et al (2007) Macrosomia and Hyperinsulinaemic Hypoglycaemia in Patients with Heterozygous Mutations in the HNF4A Gene. PLoS Med 4(4):e118. https://doi.org/10.1371/journal.pmed.0040118
CAS
Article
PubMed
PubMed Central
Google Scholar
Glaser B (2007) Type 2 Diabetes: Hypoinsulinism, Hyperinsulinism, or Both? PLoS Med 4(4):e148. https://doi.org/10.1371/journal.pmed.0040148
CAS
Article
PubMed
PubMed Central
Google Scholar
Harries LW, Locke JM, Shields B et al (2008) The Diabetic Phenotype in HNF4A Mutation Carriers Is Moderated By the Expression of HNF4A Isoforms From the P1 Promoter During Fetal Development. Diabetes 57(6):1745–1752. https://doi.org/10.2337/db07-1742
CAS
Article
PubMed
Google Scholar
Lambert É, Babeu J-P, Simoneau J et al (2020) Human Hepatocyte Nuclear factor 4-α Encodes Isoforms with Distinct Transcriptional Functions. Mol Cell Proteomics 19(5):808–827. https://doi.org/10.1074/mcp.RA119.001909
CAS
Article
PubMed
Google Scholar
Donohue WL, Uchida I (1954) Leprechaunism: a euphemism for a rare familial disorder. J Pediatr 45(5):505–519. https://doi.org/10.1016/s0022-3476(54)80113-2
CAS
Article
PubMed
Google Scholar
Elsas LJ, Endo F, Strumlauf E, Elders J, Priest JH (1985) Leprechaunism: an inherited defect in a high-affinity insulin receptor. Am J Hum Genet 37(1):73–88
CAS
PubMed
PubMed Central
Google Scholar
Krook A, O’Rahilly S, Brueton L (1993) Homozygous nonsense mutation in the insulin receptor gene in infant with leprechaunism. Lancet 342(8866):277–278. https://doi.org/10.1016/0140-6736(93)91820-C
CAS
Article
PubMed
Google Scholar
Garg A, Agarwal AK (2009) Lipodystrophies: Disorders of adipose tissue biology. Biochimica Biophysica Acta Mol Cell Biol Lipids 1791(6):507–513. https://doi.org/10.1016/j.bbalip.2008.12.014
CAS
Article
Google Scholar
Seip M, Trygstad O (1996) Generalized lipodystrophy, congenital and acquired (lipoatrophy). Acta Paediatrica 85(s413):2–28. https://doi.org/10.1111/j.1651-2227.1996.tb14262.x
Article
Google Scholar
Muschke P, Kölsch U, Jakubiczka S, Wieland I, Brune T, Wieacker P (2007) The heterozygous LMNA mutation p.R471G causes a variable phenotype with features of two types of familial partial lipodystrophy. Am J Med Genet A 143A(23):2810–2814. https://doi.org/10.1002/ajmg.a.32046
CAS
Article
PubMed
Google Scholar
Krawiec P, Mełges B, Pac-Kożuchowska E, Mroczkowska-Juchkiewicz A, Czerska K (2016) Fitting the pieces of the puzzle together: a case report of the Dunnigan-type of familial partial lipodystrophy in the adolescent girl. BMC Pediatr 16(1):38. https://doi.org/10.1186/s12887-016-0581-2
CAS
Article
PubMed
PubMed Central
Google Scholar
Shackleton S, Lloyd DJ, Jackson SN et al (2000) LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nat Genet 24(2):153–156. https://doi.org/10.1038/72807
CAS
Article
PubMed
Google Scholar
Barroso I, Gurnell M, Crowley VE et al (1999) Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402(6764):880–883. https://doi.org/10.1038/47254
CAS
Article
PubMed
Google Scholar
Gandotra S, Le Dour C, Bottomley W et al (2011) Perilipin Deficiency and Autosomal Dominant Partial Lipodystrophy. N Engl J Med 354(8):740–748. https://doi.org/10.1056/NEJMoa1007487
Article
Google Scholar
Tyrrell JS, Yaghootkar H, Freathy RM, Hattersley AT, Frayling TM (2013) Parental diabetes and birthweight in 236 030 individuals in the UK Biobank Study. Int J Epidemiol 42(6):1714–1723. https://doi.org/10.1093/ije/dyt220
Article
PubMed
PubMed Central
Google Scholar
Lindsay RS, Dabelea D, Roumain J, Hanson RL, Bennett PH, Knowler WC (2000) Type 2 diabetes and low birth weight: the role of paternal inheritance in the association of low birth weight and diabetes. Diabetes 49(3):445–449. https://doi.org/10.2337/diabetes.49.3.445
CAS
Article
PubMed
Google Scholar
HAPO Study Cooperative Research Group (2008) Hyperglycemia and adverse pregnancy outcomes. N Engl J Med 358(19):1991–2002. https://doi.org/10.1056/NEJMoa0707943
Article
Google Scholar
Hillman S, Peebles DM, Williams DJ (2013) Paternal metabolic and cardiovascular risk factors for fetal growth restriction: a case-control study. Diabetes Care 36(6):1675–1680. https://doi.org/10.2337/dc12-1280
CAS
Article
PubMed
PubMed Central
Google Scholar
Wannamethee SG, Lawlor DA, Whincup PH, Walker M, Ebrahim S, Davey-Smith G (2004) Birthweight of offspring and paternal insulin resistance and paternal diabetes in late adulthood: cross sectional survey. Diabetologia 47(1):12–18. https://doi.org/10.1007/s00125-003-1270-x
CAS
Article
PubMed
Google Scholar
Knight B, Shields BM, Hill A et al (2006) Offspring birthweight is not associated with paternal insulin resistance. Diabetologia 49(11):2675–2678. https://doi.org/10.1007/s00125-006-0417-y
CAS
Article
PubMed
Google Scholar
Shields BM, Knight B, Turner M et al (2006) Paternal insulin resistance and its association with umbilical cord insulin concentrations. Diabetologia 49(11):2668–2674. https://doi.org/10.1007/s00125-006-0282-8
CAS
Article
PubMed
Google Scholar
Sladek R, Rocheleau G, Rung J et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881–885. https://doi.org/10.1038/nature05616
CAS
Article
PubMed
Google Scholar
Zeggini E, Weedon MN, Lindgren CM et al (2007) Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316(5829):1336–1341. https://doi.org/10.1126/science.1142364
CAS
Article
PubMed
PubMed Central
Google Scholar
Zeggini E, Scott LJ, Saxena R et al (2008) Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nat Genet 40(5):638–645. https://doi.org/10.1038/ng.120
CAS
Article
PubMed
PubMed Central
Google Scholar
Freathy RM, Bennett AJ, Ring SM et al (2009) Type 2 diabetes risk alleles are associated with reduced size at birth. Diabetes 58(6):1428–1433. https://doi.org/10.2337/db08-1739
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhao J, Li M, Bradfield JP et al (2009) Examination of type 2 diabetes loci implicates CDKAL1 as a birth weight gene. Diabetes 58(10):2414–2418. https://doi.org/10.2337/db09-0506
CAS
Article
PubMed
PubMed Central
Google Scholar
Freathy RM, Mook-Kanamori DO, Sovio U et al (2010) Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight. Nat Genet 42(5):430–435. https://doi.org/10.1038/ng.567
CAS
Article
PubMed
PubMed Central
Google Scholar
Hodson DJ, Mitchell RK, Marselli L et al (2014) ADCY5 Couples Glucose to Insulin Secretion in Human Islets. Diabetes 63(9):3009–3021. https://doi.org/10.2337/db13-1607
Article
PubMed
PubMed Central
Google Scholar
Horikoshi M, Beaumont RN, Day FR et al (2016) Genome-wide associations for birth weight and correlations with adult disease. Nature 538(7624):248–252. https://doi.org/10.1038/nature19806
CAS
Article
PubMed
PubMed Central
Google Scholar
Beaumont RN, Warrington NM, Cavadino A et al (2018) Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics. Hum Mol Genet 27(4):742–756. https://doi.org/10.1093/hmg/ddx429
CAS
Article
PubMed
PubMed Central
Google Scholar
Warrington NM, Beaumont RN, Horikoshi M et al (2019) Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors. Nat Genet 51(5):804–814. https://doi.org/10.1038/s41588-019-0403-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Warrington NM, Freathy RM, Neale MC, Evans DM (2018) Using structural equation modelling to jointly estimate maternal and fetal effects on birthweight in the UK Biobank. Int J Epidemiol 47(4):1229–1241. https://doi.org/10.1093/ije/dyy015
Article
PubMed
PubMed Central
Google Scholar
Mahajan A, Taliun D, Thurner M et al (2018) Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 50(11):1505–1513. https://doi.org/10.1038/s41588-018-0241-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Lizio M, Ishizu Y, Itoh M et al (2015) Mapping Mammalian Cell-type-specific Transcriptional Regulatory Networks Using KD-CAGE and ChIP-seq Data in the TC-YIK Cell Line. Front Genet 6:331. https://doi.org/10.3389/fgene.2015.00331
CAS
Article
PubMed
PubMed Central
Google Scholar
Yaghootkar H, Lotta LA, Tyrrell J et al (2016) Genetic Evidence for a Link Between Favorable Adiposity and Lower Risk of Type 2 Diabetes, Hypertension, and Heart Disease. Diabetes 65(8):2448–2460. https://doi.org/10.2337/db15-1671
CAS
Article
PubMed
PubMed Central
Google Scholar
Thompson WD, Beaumont RN, Kuang A et al (2020) Fetal alleles predisposing to metabolically favourable adiposity are associated with higher birth weight. bioRxiv 302208 (Preprint). 17 Sep 2020. Available from: https://doi.org/10.1101/2020.09.17.302208
Hughes AE, Nodzenski M, Beaumont RN et al (2018) Fetal Genotype and Maternal Glucose Have Independent and Additive Effects on Birth Weight. Diabetes 67(5):1024–1029. https://doi.org/10.2337/db17-1188
CAS
Article
PubMed
PubMed Central
Google Scholar
Bertram CE, Hanson MA (2001) Animal models and programming of the metabolic syndrome: Type 2 diabetes. Br Med Bull 60(1):103–121. https://doi.org/10.1093/bmb/60.1.103
CAS
Article
PubMed
Google Scholar
Stein AD, Obrutu OE, Behere RV, Yajnik CS (2019) Developmental undernutrition, offspring obesity and type 2 diabetes. Diabetologia 62(10):1773–1778. https://doi.org/10.1007/s00125-019-4930-1
Article
PubMed
Google Scholar
Poulsen P, Vaag AA, Kyvik KO, Møller Jensen D, Beck-Nielsen H (1997) Low birth weight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs. Diabetologia 40(4):439–446. https://doi.org/10.1007/s001250050698
CAS
Article
PubMed
Google Scholar
Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Smith GD (2008) Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Stat Med 27(8):1133–1163. https://doi.org/10.1002/sim.3034
Article
PubMed
Google Scholar
Wang T, Huang T, Li Y et al (2016) Low birthweight and risk of type 2 diabetes: a Mendelian randomisation study. Diabetologia 59(9):1920–1927. https://doi.org/10.1007/s00125-016-4019-z
Article
PubMed
PubMed Central
Google Scholar
Zanetti D, Tikkanen E, Gustafsson S, Priest JR, Burgess S, Ingelsson E (2018) Birthweight, Type 2 Diabetes Mellitus, and Cardiovascular Disease. Circ Genom Precisi Med 11(6):e002054. https://doi.org/10.1161/CIRCGEN.117.002054
Article
Google Scholar
Huang T, Wang T, Zheng Y et al (2019) Association of Birth Weight With Type 2 Diabetes and Glycemic Traits: A Mendelian Randomization Study. JAMA Netw Open 2(9):e1910915–e1910915. https://doi.org/10.1001/jamanetworkopen.2019.10915
Article
PubMed
PubMed Central
Google Scholar
Freathy RM (2016) Can genetic evidence help us to understand the fetal origins of type 2 diabetes? Diabetologia 59(9):1850–1854. https://doi.org/10.1007/s00125-016-4057-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Cousminer DL, Freathy RM Genetics of early growth traits. Hum Mol Genet 29(R1):R66–R72. https://doi.org/10.1093/hmg/ddaa149
Lawlor D, Richmond R, Warrington N et al (2017) Using Mendelian randomization to determine causal effects of maternal pregnancy (intrauterine) exposures on offspring outcomes: Sources of bias and methods for assessing them. Wellcome Open Res 2:11. https://doi.org/10.12688/wellcomeopenres.10567.1
Article
PubMed
PubMed Central
Google Scholar
Moen G-H, Brumpton B, Willer C et al (2020) Mendelian randomization study of maternal influences on birthweight and future cardiometabolic risk in the HUNT cohort. Nat Commun 11(1):5404. https://doi.org/10.1038/s41467-020-19257-z
CAS
Article
PubMed
PubMed Central
Google Scholar
Edghill EL, Bingham C, Slingerland AS et al (2006) Hepatocyte nuclear factor-1 beta mutations cause neonatal diabetes and intrauterine growth retardation: support for a critical role of HNF-1β in human pancreatic development. Diabet Med 23(12):1301–1306. https://doi.org/10.1111/j.1464-5491.2006.01999.x
CAS
Article
PubMed
Google Scholar
Agarwal AK, Arioglu E, de Almeida S et al (2002) AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34. Nat Genet 31(1):21–23. https://doi.org/10.1038/ng880
CAS
Article
PubMed
Google Scholar
Magré J, Delépine M, Khallouf E et al (2001) Identification of the gene altered in Berardinelli-Seip congenital lipodystrophy on chromosome 11q13. Nat Genet 28(4):365–370. https://doi.org/10.1038/ng585
Article
PubMed
Google Scholar
Kim CA, Delépine M, Boutet E et al (2008) Association of a Homozygous Nonsense Caveolin-1 Mutation with Berardinelli-Seip Congenital Lipodystrophy. J Clin Endocrinol Metab 93(4):1129–1134. https://doi.org/10.1210/jc.2007-1328
CAS
Article
PubMed
Google Scholar
Udler MS, Kim J, von Grotthuss M et al (2018) Type 2 diabetes genetic loci informed by multi-trait associations point to disease mechanisms and subtypes: A soft clustering analysis. PLoS Medicine 15(9):e1002654. https://doi.org/10.1371/journal.pmed.1002654
CAS
Article
PubMed
PubMed Central
Google Scholar
Mahajan A, Wessel J, Willems SM et al (2018) Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat Genet 50(4):559–571. https://doi.org/10.1038/s41588-018-0084-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Thomsen SK, Ceroni A, van de Bunt M et al (2016) Systematic Functional Characterization of Candidate Causal Genes for Type 2 Diabetes Risk Variants. Diabetes 65(12):3805–3811. https://doi.org/10.2337/db16-0361
CAS
Article
PubMed
PubMed Central
Google Scholar