Cell isolation and culture
Human subcutaneous adipose tissue samples from healthy individuals (white females aged 25 to <75 years and BMI <30 kg/m2) were obtained after liposuction surgery (Bergman Clinics, Zwolle, the Netherlands). Anonymously donated samples were obtained with informed consent as approved by the ethical board of the University Medical Center Groningen, following the guidelines for ‘waste materials’. Lipoaspirates were enzymatically digested to obtain the ASCs, as described in our previous study [27]. The pooled ASCs from passages 3 to 6 were used for experiments. The ASCs were cultured in DMEM (Lonza, Basel, Switzerland) either with normal glucose (NG; 5 mmol/l d-glucose) or HG (30 mmol/l d-glucose) at normoxia (21% O2). Continuous HG maintenance of ASCs (more than three passages; ≥21 days) was considered to be chronic HG, while short-term exposure to HG (7 days) was considered to be acute HG. Conditioned medium from ASCs (ASC-Cme) was collected from confluent monolayers after culturing for more than three passages in HG-DMEM. The percentage of FBS was reduced from 10% to 2% (vol./vol.) for 24 h prior to collection [28].
For the co-culture of ASCs and HUVECs, single-cell suspensions of HUVECs were seeded on top of confluent ASCs monolayers or, as a control, on gelatin-coated wells at 10,000 cells/cm2 and vascular networks were allowed to form for at least 7 days [29]. Bovine retinal endothelial cells (BRECs) were isolated from freshly-enucleated cow eyes obtained from the slaughterhouse as described previously [30]. First-passage BRECs were used in all experiments. A purity of >99% was routinely achieved in BREC culture, which was checked microscopically, and by immunofluorescence staining of von Willebrand factor (not shown). Confluent monolayers of BRECs were incubated in three different groups (NG-DMEM, HG-DMEM and ASC-Cme) for 7 days to study the effects of each set of conditions.
Ultrastructural analyses
Co-cultures were fixed in 2% (wt/vol.) glutaraldehyde (Polysciences, Eppelheim, Germany) for 24 h. Samples were post-fixed using osmium tetroxide (Sigma-Aldrich, St. Louis, MO, USA)/potassium ferrocyanide (Sigma-Aldrich) for 30 min. Next, samples were embedded in Epon 812 (SERVA, Heidelberg, Germany) and polymerised at 37°C for 16 h followed by 56°C for 24 h. Thick sections (0.5 μm) were stained with toluidine blue (Sigma-Aldrich). Ultrathin sections (60 nm) were stained with uranyl-acetate (Sigma-Aldrich) in methanol and lead citrate (Sigma-Aldrich). Imaging was performed using a CM100 Biotwin transmission electron microscope (FEI, Eindhoven, the Netherlands).
Animals and the retinopathy of prematurity model
All animal experiments in this study adhered to the association for research in vision and ophthalmology (ARVO) Statement for the use of animals in ophthalmic and vision research. Male C57BL/6J mice (Charles River, Frankfurt, Germany) were housed with free access to standard chow and water under a 12 h light-dark rhythm. To study the effect of ASCs on hypoxia-driven angiogenesis, newborn mice were subjected to the model of retinopathy of prematurity (ROP) [31]. Mice at postnatal (P) day 7 (P7) were exposed to an atmosphere of 75% oxygen with their nursing mother for 5 days and then returned to room air at P12. Directly after their return to room air, randomly selected mice were intravitreally injected under anaesthesia with either 1 μl of PBS containing approximately 10,000 ASCs (passage 1) or 1 μl of PBS as a control. Eyes were enucleated under deep anaesthesia at P13 for immunofluorescence analysis; at P13 and P19 for quantitative real-time PCR (qPCR) analysis; and at P17 for quantification of neovascularisation. After collection, eyes were immediately fixed in buffered formalin or stored at −80°C for the following analysis.
Quantification of hypoxia-driven neovascularisation
Neovascularisation in retinas was assessed in paraffin sections of P17 animals injected at P12 with ASCs or a control. To this end, sections (6 μm) were stained with periodic acid–Schiff’s reagent (Sigma-Aldrich). Nuclei of neovessels at the vitreous side of the inner limiting membrane of the retinas were counted as described previously [32].
Assessment of ASCs in vivo
Whole-mount retinas from P13 animals were permeabilised with 0.5% (wt/vol.) Triton-X100 at room temperature for 1 h. Overnight staining was with FITC/TRITC-labelled isolectin-B4 (1:50; Sigma-Aldrich) at 4°C. After PBS washes, retinas were flat-mounted in glycerol and micrographs were obtained with a fluorescence microscope (Lectin-FITC/ASC-Dil red staining; Leica BMR, Bensheim, Germany) or a confocal microscope (Lectin-TRITC/ASC-EGFP staining; Leica TCS SP2 confocal microscope, Leica, Wetzlar, Germany). ASCs presence was revealed through their pre-injection label, which was either CM-DiI-red (ThermoFisher, Waltham, MA, USA) or enhanced green fluorescent protein (EGFP) lentiviral tag.
Gene expression analysis
Total RNA was extracted from ASCs and BRECs in TRIzol reagent (Life Technologies, Carlsbad, CA, USA) following the manufacturer’s protocol. Retinas were isolated from frozen eyes of ROP and control mice at P13 (n = 5) and ROP mice at P19 in the presence of ASC injection or PBS (n = 5). Afterwards, 1 μg of total RNA from each sample was reverse transcribed using the First Strand cDNA Synthesis Kit (Fermentas, Vilnius, Lithuania) according to the manufacturer’s instructions. The cDNA equivalent of 10 ng RNA was used for amplification in 384-well plates in a TaqMan ABI 7900HT thermal cycler (Applied Biosystems, Foster City, CA, USA) in a final reaction volume of 10 μl containing 5 μl SYBR Green Universal PCR Master Mix (BioRad, Hercules, CA, USA) and 6 μmol/l primer mix (forward and reverse). The cycle threshold (Ct) values were normalised to GAPDH/ACTB as a reference gene using the ΔΔCt method [33].
Assessment of cell viability
Viability was assessed using the Apoptosis & Necrosis Kit (Promokine, Heidelberg, Germany) as recommended in the manufacturer’s instructions. In short, BRECs were incubated with 5 μl fluorescein-conjugated annexin V (a marker of apoptosis) and 5 μl ethidium homodimer III (at a concentration of 2 × 106 cells/ml) at room temperature for 15 min. Fluorescence was recorded on a BD FACSCalibur (BD Biosciences, Franklin Lakes, NJ, USA) within 1 h of staining.
Quantification of ROS
Cellular ROS production was determined using the dye 2′,7′-dichlorofluorescein diacetate (DCFH-DA, Sigma-Aldrich). Two-electron oxidation of DCFH-DA results in the formation of a fluorescent product, dichlorofluorescein (DCF) [34]. Experimental cells were suspended in 20 μmol/l DCFH-DA in the dark at 37°C for 15 min. The general ROS scavenger N-acetyl-l-cysteine (NAC, 10 mmol/l, Sigma-Aldrich) and H2O2 (3 μmol/l, Merck Millipore, Darmstadt, Germany) were used as negative and positive controls, respectively. Samples were analysed directly using a FACSCalibur within 15 min of staining.
Screening for immune stimulation
The supernatant of HG-stimulated BRECs cultured with or without ASC-Cme and the control group (BRECs in NG) were collected after 7 days. To assess the immunogenicity of these samples, THP1-XBlue-MD2-CD14 cells (InvivoGen, Toulouse, France) were used as described previously [35]. THP1-XBlue-MD2-CD14 cells were plated, then each well was stimulated with samples of supernatants and cultured overnight at 37°C in 5% CO2. Lipopolysaccharide (LPS, 10 μg/ml, Sigma-Aldrich) was used as a positive control. Production of SEAP in the supernatant was quantified using QUANTI-Blue (InvivoGen). An aliquot of QUANTI-Blue (200 μl) was dispensed into a new flat-bottomed 96-well plate with 20 μl of supernatant from the stimulated cell-lines for 45 min at 37°C. Secreted embryonic alkaline phosphatase (SEAP) activity, representing activation of NF-κB, was then measured at a wavelength of 650 nm on a VersaMax microplate reader (Molecular Devices, Biberach an der Riss, Germany) [35].
ELISA
Culture medium was collected from different experimental conditions. The concentrations of PGE2 and CCL2 in the medium were quantified, respectively, with the Prostaglandin E2 Human ELISA Kit (ThermoFisher) and the Human CCL2/MCP-1 DuoSet ELISA (R&D Systems, Minneapolis, MN, USA) according to the manufacturer’s protocol. LPS (200 ng/ml) and TNF-α (50 ng/ml, Sigma-Aldrich) were used as positive controls. The COX2 inhibitor celecoxib (10 mmol/l, Sigma-Aldrich) was used to inhibit PGE2 production. Results were normalised to the number of cells in each experimental condition and presented in pg/ml as fold change relative to their respective experimental controls.
Monocyte adhesion assay
One of the cardinal steps of inflammation is the infiltration of immune cells such as monocytes across the endothelial cell layer [36]. THP-1 monocytes were stained using the Vybrant CFDA SE Cell Tracer Kit (ThermoFisher) according to the manufacturer’s instructions. Treated groups of BRECs (under HG with or without ASC-Cme), a positive-control group (pre-incubated with medium containing TNF-α [10 ng/ml] for 8 h) and a control group (NG) were plated at a density of 5 × 103 cells/cm2 in standard 96-well culture plates and allowed to adhere at 37°C for 4 h. Labelled THP-1 cells (2 × 105 cells/ml) were added to each well. After incubation for 1 h, wells were washed to remove non-adhered cells. Fluorescence of adherent cells was recorded on a Varioskan spectrofluorometer (Thermo Scientific, Waltham, MA, USA) at excitation/emission = 492/520 nm [37].
Scratch wound healing assay
BRECs in three different groups (NG, HG and ASC-Cme) were cultured until they reached confluency. The straight, width-limited scratch was made in all the wells, simulating a wound. The recovery of both wound edges was recorded simultaneously using the Solamere Nipkow confocal live cell imaging microscope (Solamere Technology Group, Salt Lake City, UT, USA) for 30 h. The percentage of covered area between the edges was analysed by ImageJ 1.8.0-172 software (imagej.nih.gov/ij/download/).
Statistical analysis
Data are expressed as mean ± SEM and relative to vehicle controls of at least three independent experiments in triplicate. Statistical evaluation was performed using unpaired t tests and ANOVA followed by Bonferroni post hoc analysis. p values <0.05 were considered statistically significant.