, Volume 57, Issue 10, pp 2108–2116 | Cite as

Glucagon regulates orexin A secretion in humans and rodents

  • Ayman M. Arafat
  • Przemysław Kaczmarek
  • Marek Skrzypski
  • Ewa Pruszyńska-Oszmałek
  • Paweł Kołodziejski
  • Aikaterini Adamidou
  • Stephan Ruhla
  • Dawid Szczepankiewicz
  • Maciej Sassek
  • Maria Billert
  • Bertram Wiedenmann
  • Andreas F. H. Pfeiffer
  • Krzysztof W. Nowak
  • Mathias Z. StrowskiEmail author



Orexin A (OXA) modulates food intake, energy expenditure, and lipid and glucose metabolism. OXA regulates the secretion of insulin and glucagon, while glucose regulates OXA release. Here, we evaluate the role of glucagon in regulating OXA release both in vivo and in vitro.


In a double-blind crossover study, healthy volunteers and type 1 diabetic patients received either intramuscular glucagon or placebo. Patients newly diagnosed with type 2 diabetes underwent hyperinsulinaemic–euglycaemic clamp experiments, and insulin–hypoglycaemia tests were performed on healthy volunteers. The primary endpoint was a change in OXA levels after intramuscular glucagon or placebo administration in healthy participants and patients with type 1 diabetes. Secondary endpoints included changes in OXA in healthy participants during insulin tolerance tests and in patients with type 2 diabetes under hyperinsulinaemic–euglycaemic conditions. Participants and staff conducting examinations and taking measurements were blinded to group assignment. OXA secretion in response to glucagon treatment was assessed in healthy and obese mice, the streptozotocin-induced mouse model of type 1 diabetes, and isolated rat pancreatic islets.


Plasma OXA levels declined in lean volunteers and in type 1 diabetic patients injected with glucagon. OXA levels increased during hyperinsulinaemic hypoglycaemia testing in healthy volunteers and during hyperinsulinaemic euglycaemic conditions in type 2 diabetic patients. Plasma OXA concentrations in healthy lean and obese mice and in a mouse model of type 1 diabetes were lower after glucagon treatment, compared with vehicle control. Glucagon decreased OXA secretion from isolated rat pancreatic islets at both low and high glucose levels. OXA secretion declined in pancreatic islets exposed to diazoxide at high and low glucose levels, and after exposure to an anti-insulin antibody. Glucagon further reduced OXA secretion in islets pretreated with diazoxide or an anti-insulin antibody.


Glucagon inhibits OXA secretion in humans and animals, irrespective of changes in glucose or insulin levels. Through modifying OXA secretion, glucagon may influence energy expenditure, body weight, food intake and glucose metabolism.


Adipocytes Animal study Endocrine pancreas Glucose homeostasis Hepatocytes Human study Secretion Type 1 diabetes mellitus 



Body weight


Diet-induced obesity


Healthy lean participants


Orexin A


Orexin receptor


Protein kinase A


Streptozotocin-induced insulinopenic diabetes



We thank S. Hornemann from the German Institute of Human Nutrition Potsdam-Rehbruecke for her contribution to the collection of human data. We thank K. Sprengel from the German Institute of Human Nutrition, Potsdam-Rehbruecke, and A. Schönknecht and P. Exner from Charité-University Medicine Berlin for excellent technical assistance.


This study was supported by the German Diabetes Foundation (Deutsche Diabetes Stiftung; MZS and AMA), Deutsche Forschungsgemeinschaft (DFG; STR558; MZS), and the DFG-graduate school (GK1208; AMA). The study was also partially supported by the Polish National Science Centre (Narodowe Centrum Nauki; grant no. N N311 508339). MSk and PKa were supported by the Polish National Science Centre (grant no. 2011/03/N/NZ4/02965).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript

Author contributions

AMA, MZS, PKa and MSk designed the study, acquired the data and wrote the manuscript. AFHP, BW and KWN contributed to the study design and reviewed, edited and critically revised the manuscript. AA, SR, EP-O, PKo, MSa, DS and MB discussed the study design, collected and analysed the data, and edited and reviewed the manuscript. All authors gave final approval for the current version to be published. AMA and MZS take full responsibility for the content of the article.

Supplementary material

125_2014_3335_MOESM1_ESM.pdf (62 kb)
ESM Table 1 (PDF 61 kb)


  1. 1.
    Sakurai T, Amemiya A, Ishii M et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585PubMedCrossRefGoogle Scholar
  2. 2.
    Hara J, Beuckmann CT, Nambu T et al (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30:345–354PubMedCrossRefGoogle Scholar
  3. 3.
    Hara J, Yanagisawa M, Sakurai T (2005) Difference in obesity phenotype between orexin-knockout mice and orexin neuron-deficient mice with same genetic background and environmental conditions. Neurosci Lett 380:239–242PubMedCrossRefGoogle Scholar
  4. 4.
    Funato H, Tsai AL, Willie JT et al (2009) Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab 9:64–76PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    Sellayah D, Bharaj P, Sikder D (2011) Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab 14:478–490PubMedCrossRefGoogle Scholar
  6. 6.
    de Lecea L, Kilduff TS, Peyron C et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95:322–327PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Marcus JN, Aschkenasi CJ, Lee CE et al (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435:6–25PubMedCrossRefGoogle Scholar
  8. 8.
    Nakabayashi M, Suzuki T, Takahashi K et al (2003) Orexin-A expression in human peripheral tissues. Mol Cell Endocrinol 205:43–50PubMedCrossRefGoogle Scholar
  9. 9.
    Blanco M, Lopez M, Garcia-Caballero T et al (2001) Cellular localization of orexin receptors in human pituitary. J Clin Endocrinol Metab 86:1616–1619Google Scholar
  10. 10.
    Johren O, Bruggemann N, Dendorfer A, Dominiak P (2003) Gonadal steroids differentially regulate the messenger ribonucleic acid expression of pituitary orexin type 1 receptors and adrenal orexin type 2 receptors. Endocrinology 144:1219–1225PubMedCrossRefGoogle Scholar
  11. 11.
    Rodgers RJ, Halford JC, Nunes de Souza RL et al (2001) SB-334867, a selective orexin-1 receptor antagonist, enhances behavioural satiety and blocks the hyperphagic effect of orexin-A in rats. Eur J Neurosci 13:1444–1452PubMedCrossRefGoogle Scholar
  12. 12.
    Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355:39–40PubMedCrossRefGoogle Scholar
  13. 13.
    Nishino S, Ripley B, Overeem S et al (2001) Low cerebrospinal fluid hypocretin (Orexin) and altered energy homeostasis in human narcolepsy. Ann Neurol 50:381–388PubMedCrossRefGoogle Scholar
  14. 14.
    Peyron C, Faraco J, Rogers W et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6:991–997PubMedCrossRefGoogle Scholar
  15. 15.
    Siegel JM, Moore R, Thannickal T, Nienhuis R (2001) A brief history of hypocretin/orexin and narcolepsy. Neuropsychopharmacology 25:S14–S20PubMedCrossRefGoogle Scholar
  16. 16.
    Honda Y, Doi Y, Ninomiya R, Ninomiya C (1986) Increased frequency of non-insulin-dependent diabetes mellitus among narcoleptic patients. Sleep 9:254–259PubMedGoogle Scholar
  17. 17.
    Sakurai T (2005) Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev 9:231–241PubMedCrossRefGoogle Scholar
  18. 18.
    Tsuneki H, Murata S, Anzawa Y et al (2008) Age-related insulin resistance in hypothalamus and peripheral tissues of orexin knockout mice. Diabetologia 51:657–667PubMedCrossRefGoogle Scholar
  19. 19.
    Tsuneki H, Sugihara Y, Honda R, Wada T, Sasaoka T, Kimura I (2002) Reduction of blood glucose level by orexins in fasting normal and streptozotocin-diabetic mice. Eur J Pharmacol 448:245–252PubMedCrossRefGoogle Scholar
  20. 20.
    Harada S, Yamazaki Y, Tokuyama S (2013) Orexin-A suppresses postischemic glucose intolerance and neuronal damage through hypothalamic brain-derived neurotrophic factor. J Pharmacol Exp Ther 344:276–285PubMedCrossRefGoogle Scholar
  21. 21.
    Shiuchi T, Haque MS, Okamoto S et al (2009) Hypothalamic orexin stimulates feeding-associated glucose utilization in skeletal muscle via sympathetic nervous system. Cell Metab 10:466–480PubMedCrossRefGoogle Scholar
  22. 22.
    Ducroc R, Voisin T, El Firar A, Laburthe M (2007) Orexins control intestinal glucose transport by distinct neuronal, endocrine, and direct epithelial pathways. Diabetes 56:2494–2500PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Skrzypski M, Le TT, Kaczmarek P et al (2011) Orexin A stimulates glucose uptake, lipid accumulation and adiponectin secretion from 3T3-L1 adipocytes and isolated primary rat adipocytes. Diabetologia 54:1841–1852PubMedCrossRefGoogle Scholar
  24. 24.
    Switonska MM, Kaczmarek P, Malendowicz LK, Nowak KW (2002) Orexins and adipoinsular axis function in the rat. Regul Pept 104:69–73PubMedCrossRefGoogle Scholar
  25. 25.
    Nowak KW, Strowski MZ, Switonska MM et al (2005) Evidence that orexins A and B stimulate insulin secretion from rat pancreatic islets via both receptor subtypes. Int J Mol Med 15:969–972PubMedGoogle Scholar
  26. 26.
    Goncz E, Strowski MZ, Grotzinger C et al (2008) Orexin-A inhibits glucagon secretion and gene expression through a Fox01-dependent pathway. Endocrinology 149:1618–1626PubMedCrossRefGoogle Scholar
  27. 27.
    Ehrstrom M, Naslund E, Levin F et al (2004) Pharmacokinetic profile of orexin A and effects on plasma insulin and glucagon in the rat. Regul Pept 119:209–212PubMedCrossRefGoogle Scholar
  28. 28.
    Ouedraogo R, Naslund E, Kirchgessner AL (2003) Glucose regulates the release of orexin-a from the endocrine pancreas. Diabetes 52:111–117PubMedCrossRefGoogle Scholar
  29. 29.
    Consoli A (1992) Role of liver in pathophysiology of NIDDM. Diabetes Care 15:430–441PubMedCrossRefGoogle Scholar
  30. 30.
    Komaki G, Matsumoto Y, Nishikata H et al (2001) Orexin-A and leptin change inversely in fasting non-obese subjects. Eur J Endocrinol 144:645–651PubMedCrossRefGoogle Scholar
  31. 31.
    Arafat AM, Kaczmarek P, Skrzypski M et al (2013) Glucagon increases circulating fibroblast growth factor 21 independently of endogenous insulin levels: a novel mechanism of glucagon-stimulated lipolysis? Diabetologia 56:588–597PubMedCrossRefGoogle Scholar
  32. 32.
    Arafat MA, Otto B, Rochlitz H et al (2005) Glucagon inhibits ghrelin secretion in humans. Eur J Endocrinol 153:397–402PubMedCrossRefGoogle Scholar
  33. 33.
    Arafat AM, Perschel FH, Otto B et al (2006) Glucagon suppression of ghrelin secretion is exerted at hypothalamus-pituitary level. J Clin Endocrinol Metab 91:3528–3533PubMedCrossRefGoogle Scholar
  34. 34.
    Lee Y, Wang MY, Du XQ, Charron MJ, Unger RH (2011) Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 60:391–397PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Skrzypski M, Kakkassery M, Mergler S et al (2013) Activation of TRPV4 channel in pancreatic INS-1E beta cells enhances glucose-stimulated insulin secretion via calcium-dependent mechanisms. FEBS Lett 587:3281–3287PubMedCrossRefGoogle Scholar
  36. 36.
    Dostmann WR (1995) (RP)-cAMPS inhibits the cAMP-dependent protein kinase by blocking the cAMP-induced conformational transition. FEBS Lett 375:231–234PubMedCrossRefGoogle Scholar
  37. 37.
    Goode PN, Farndon JR, Anderson J, Johnston ID, Morte JA (1986) Diazoxide in the management of patients with insulinoma. World J Surg 10:586–592PubMedCrossRefGoogle Scholar
  38. 38.
    Trube G, Rorsman P (1986) Calcium and potassium currents recorded from pancreatic beta-cells under voltage clamp control. Adv Exp Med Biol 211:167–175PubMedCrossRefGoogle Scholar
  39. 39.
    Gilon P, Henquin JC (1992) Influence of membrane potential changes on cytoplasmic Ca2+ concentration in an electrically excitable cell, the insulin-secreting pancreatic B cell. J Biol Chem 267:20713–20720PubMedGoogle Scholar
  40. 40.
    Urdanivia E, Pek S, Santiago JC (1979) Inhibition of glucagon secretion by diazoxide in vitro. Diabetes 28:26–31PubMedCrossRefGoogle Scholar
  41. 41.
    Cherrington AD (1997) The metabolic actions of glucagon. In: Draznin B, Rizza E (eds) Clinical research in diabetes and obesity, volume 1: methods, assessment, and metabolic regulation (contemporary biomedicine), 1st edn. Humana Press, Totowa, p 222Google Scholar
  42. 42.
    Geary N, Kissileff HR, Pi-Sunyer FX, Hinton V (1992) Individual, but not simultaneous, glucagon and cholecystokinin infusions inhibit feeding in men. Am J Physiol 262:R975–R980PubMedGoogle Scholar
  43. 43.
    Geary N (1990) Pancreatic glucagon signals postprandial satiety. Neurosci Biobehav Rev 14:323–338PubMedCrossRefGoogle Scholar
  44. 44.
    Vanderweele DA, Macrum BL, Oetting RL (1986) Glucagon, satiety from feeding and liver/pancreatic interactions. Brain Res Bull 17:539–543PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ayman M. Arafat
    • 1
    • 2
  • Przemysław Kaczmarek
    • 3
  • Marek Skrzypski
    • 3
    • 4
  • Ewa Pruszyńska-Oszmałek
    • 3
  • Paweł Kołodziejski
    • 3
  • Aikaterini Adamidou
    • 1
  • Stephan Ruhla
    • 1
  • Dawid Szczepankiewicz
    • 3
  • Maciej Sassek
    • 3
    • 4
  • Maria Billert
    • 3
  • Bertram Wiedenmann
    • 4
  • Andreas F. H. Pfeiffer
    • 1
    • 2
  • Krzysztof W. Nowak
    • 3
  • Mathias Z. Strowski
    • 4
    • 5
    Email author
  1. 1.Department of Endocrinology, Diabetes and NutritionCharité-University Medicine BerlinBerlinGermany
  2. 2.Department of Clinical NutritionGerman Institute of Human Nutrition Potsdam-RehbrueckeNuthetalGermany
  3. 3.Department of Animal Physiology and BiochemistryPoznań University of Life SciencesPoznańPoland
  4. 4.Department of Hepatology and Gastroenterology & the Interdisciplinary Centre of Metabolism, Endocrinology, Diabetes and MetabolismCharité-University Medicine Berlin Campus Virchow-KlinikumBerlinGermany
  5. 5.Department of Internal Medicine 1Elbland ClinicMeissenGermany

Personalised recommendations