Skip to main content

Advertisement

Log in

Caveolin-1 deficiency protects against mesangial matrix expansion in a mouse model of type 1 diabetic nephropathy

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Glomerular matrix protein accumulation, mediated largely by resident mesangial cells (MCs), is central to the pathogenesis of diabetic nephropathy. We previously showed that caveolin (CAV)-1/caveolae mediate matrix upregulation by MCs in response to high glucose and TGFβ, two important pathogenic mediators of diabetic glomerular sclerosis. Here, we evaluated the in vivo role of CAV-1/caveolae in the development of diabetic nephropathy.

Methods

Diabetes was induced in Cav1-knockout (KO) mice and their wild-type (WT) counterparts by streptozotocin injection. After 10 months, kidneys were evaluated for the development of nephropathy, including glomerular sclerosis and upregulation of matrix proteins. Parallel experiments assessing glucose-induced matrix upregulation were carried out in MCs isolated from KO mice.

Results

KO diabetic mice developed hyperglycaemia and renal hypertrophy, but were protected from developing albuminuria and glomerular sclerosis compared with WT mice. KO mice were significantly protected from the upregulation of glomerular collagen I, fibronectin, connective tissue growth factor (CTGF) and TGFβ. In vitro, glucose induced collagen I A1 promoter activation and collagen I, fibronectin and CTGF protein upregulation in WT but not KO MCs. Re-expression of Cav1 in KO cells restored this response.

Conclusions/interpretation

Cav1 deletion rendered significant protection from glomerular matrix accumulation and albuminuria in a mouse model of type 1 diabetes. These studies provide a foundation for the development of renal-targeted interference with CAV-1/caveolae as a novel approach to the treatment of diabetic nephropathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AMPK:

AMP-activated protein kinase

CAV:

Caveolin

CSD:

CAV-1 scaffolding domain

CTGF:

Connective tissue growth factor

EM:

Electron microscopy

β-gal:

β-Galactosidase

GST:

Glutathione S-transferase

HG:

High glucose

KO:

Knockout

KO/Cav1 :

KO MCs with Cav1 re-expression

KO/pLHCX:

KO MCs expressing the empty vector pLHCX

MC:

Mesangial cell

MMP:

Matrix metalloproteinase

PAS:

Periodic acid–Schiff’s reagent

PKC:

Protein kinase C

RBD:

Rho-binding domain

RhoA:

Ras homologue gene family, member A

ROS:

Reactive oxygen species

SMAD3:

SMAD family member 3

STZ:

Streptozotocin

VWF:

von Willebrand factor

WT:

Wild-type

References

  1. Forbes JM, Fukami K, Cooper ME (2007) Diabetic nephropathy: where hemodynamics meets metabolism. Exp Clin Endocrinol Diabetes 115:69–84

    Article  PubMed  CAS  Google Scholar 

  2. Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius FC III (2008) From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes 57:1439–1445

    Article  PubMed  CAS  Google Scholar 

  3. Zhang Y, Peng F, Gao B, Ingram AJ, Krepinsky JC (2012) High glucose-induced RhoA activation requires caveolae and PKCbeta1-mediated ROS generation. Am J Physiol Renal Physiol 302:F159–F172

    Article  PubMed  CAS  Google Scholar 

  4. Peng F, Zhang B, Wu D, Ingram AJ, Gao B, Krepinsky JC (2008) TGFbeta-induced RhoA activation and fibronectin production in mesangial cells require caveolae. Am J Physiol Renal Physiol 295:F153–F164

    Article  PubMed  CAS  Google Scholar 

  5. Tamai O, Oka N, Kikuchi T et al (2001) Caveolae in mesangial cells and caveolin expression in mesangial proliferative glomerulonephritis. Kidney Int 59:471–480

    Article  PubMed  CAS  Google Scholar 

  6. Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  PubMed  CAS  Google Scholar 

  7. Zhang B, Peng F, Wu D, Ingram AJ, Gao B, Krepinsky JC (2007) Caveolin-1 phosphorylation is required for stretch-induced EGFR and Akt activation in mesangial cells. Cell Signal 19:1690–1700

    Article  PubMed  CAS  Google Scholar 

  8. Sindhu RK, Ehdaie A, Vaziri ND, Roberts CK (2004) Effects of chronic renal failure on caveolin-1, guanylate cyclase and AKT protein expression. Biochim Biophys Acta 1690:231–237

    Article  PubMed  CAS  Google Scholar 

  9. Yamamoto I, Horita S, Takahashi T et al (2008) Caveolin-1 expression is a distinct feature of chronic rejection-induced transplant capillaropathy. Am J Transplant 8:2627–2635

    Article  PubMed  CAS  Google Scholar 

  10. Moriyama T, Tsuruta Y, Shimizu A et al (2011) The significance of caveolae in the glomeruli in glomerular disease. J Clin Pathol 64:504–509

    Article  PubMed  Google Scholar 

  11. Razani B, Engelman JA, Wang XB et al (2001) Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem 276:38121–38138

    Article  PubMed  CAS  Google Scholar 

  12. Sorensson J, Fierlbeck W, Heider T et al (2002) Glomerular endothelial fenestrae in vivo are not formed from caveolae. J Am Soc Nephrol 13:2639–2647

    Article  PubMed  Google Scholar 

  13. Grande G, Rippe C, Rippe A, Rahman A, Sward K, Rippe B (2009) Unaltered size selectivity of the glomerular filtration barrier in caveolin-1 knockout mice. Am J Physiol Renal Physiol 297:F257–F262

    Article  PubMed  Google Scholar 

  14. Kobayashi M, Sugiyama H, Wang DH et al (2005) Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kidney Int 68:1018–1031

    Article  PubMed  CAS  Google Scholar 

  15. Wu D, Peng F, Zhang B, Ingram AJ, Gao B, Krepinsky JC (2007) Collagen I induction by high glucose levels is mediated by epidermal growth factor receptor and phosphoinositide 3-kinase/Akt signalling in mesangial cells. Diabetologia 50:2008–2018

    Article  PubMed  CAS  Google Scholar 

  16. Krepinsky JC, Ingram AJ, Tang D, Wu D, Liu L, Scholey JW (2003) Nitric oxide inhibits stretch-induced MAPK activation in mesangial cells through RhoA inactivation. J Am Soc Nephrol 14:2790–2800

    Article  PubMed  CAS  Google Scholar 

  17. Park DS, Cohen AW, Frank PG et al (2003) Caveolin-1 null (-/-) mice show dramatic reductions in life span. Biochemistry 42:15124–15131

    Article  PubMed  CAS  Google Scholar 

  18. Cohen AW, Razani B, Wang XB et al (2003) Caveolin-1-deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol 285:C222–C235

    Article  PubMed  CAS  Google Scholar 

  19. Woodman SE, Cheung MW, Tarr M et al (2004) Urogenital alterations in aged male caveolin-1 knockout mice. J Urol 171:950–957

    Article  PubMed  CAS  Google Scholar 

  20. Gurley SB, Clare SE, Snow KP, Hu A, Meyer TW, Coffman TM (2006) Impact of genetic background on nephropathy in diabetic mice. Am J Physiol Renal Physiol 290:F214–F222

    Article  PubMed  CAS  Google Scholar 

  21. Menne J, Park JK, Boehne M et al (2004) Diminished loss of proteoglycans and lack of albuminuria in protein kinase C-alpha-deficient diabetic mice. Diabetes 53:2101–2109

    Article  PubMed  CAS  Google Scholar 

  22. Meier M, Park JK, Overheu D et al (2007) Deletion of protein kinase C-β isoform in vivo reduces renal hypertrophy but not albuminuria in the streptozotocin-induced diabetic mouse model. Diabetes 56:346–354

    Article  PubMed  CAS  Google Scholar 

  23. Cicha I, Goppelt-Struebe M (2009) Connective tissue growth factor: context-dependent functions and mechanisms of regulation. Biofactors 35:200–208

    Article  PubMed  CAS  Google Scholar 

  24. Peng F, Wu D, Ingram AJ, Zhang B, Gao B, Krepinsky JC (2007) RhoA activation in mesangial cells by mechanical strain depends on caveolae and caveolin-1 interaction. J Am Soc Nephrol 18:189–198

    Article  PubMed  CAS  Google Scholar 

  25. Peng F, Wu D, Gao B et al (2008) RhoA/Rho-kinase contribute to the pathogenesis of diabetic renal disease. Diabetes 57:1683–1692

    Article  PubMed  CAS  Google Scholar 

  26. Kolavennu V, Zeng L, Peng H, Wang Y, Danesh FR (2008) Targeting of RhoA/ROCK signaling ameliorates progression of diabetic nephropathy independent of glucose control. Diabetes 57:714–723

    Article  PubMed  CAS  Google Scholar 

  27. Gorin Y, Block K, Hernandez J et al (2005) Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney. J Biol Chem 280:39616–39626

    Article  PubMed  CAS  Google Scholar 

  28. Koya D, Jirousek MR, Lin YW, Ishii H, Kuboki K, King GL (1997) Characterization of protein kinase C beta isoform activation on the gene expression of transforming growth factor-beta, extracellular matrix components, and prostanoids in the glomeruli of diabetic rats. J Clin Invest 100:115–126

    Article  PubMed  CAS  Google Scholar 

  29. Koya D, Haneda M, Nakagawa H et al (2000) Amelioration of accelerated diabetic mesangial expansion by treatment with a PKC beta inhibitor in diabetic db/db mice, a rodent model for type 2 diabetes. FASEB J 14:439–447

    PubMed  CAS  Google Scholar 

  30. Kim MY, Lim JH, Youn HH et al (2013) Resveratrol prevents renal lipotoxicity and inhibits mesangial cell glucotoxicity in a manner dependent on the AMPK-SIRT1-PGC1alpha axis in db/db mice. Diabetologia 56:204–217

    Article  PubMed  CAS  Google Scholar 

  31. Chen KH, Hung CC, Hsu HH, Jing YH, Yang CW, Chen JK (2011) Resveratrol ameliorates early diabetic nephropathy associated with suppression of augmented TGF-beta/smad and ERK1/2 signaling in streptozotocin-induced diabetic rats. Chem Biol Interact 190:45–53

    Article  PubMed  CAS  Google Scholar 

  32. Levine YC, Li GK, Michel T (2007) Agonist-modulated regulation of AMP-activated protein kinase (AMPK) in endothelial cells. Evidence for an AMPK -> Rac1 ->Akt -> endothelial nitric-oxide synthase pathway. J Biol Chem 282:20351–20364

    Article  PubMed  CAS  Google Scholar 

  33. Demova H, Komers R (2009) Determination of caveolin-1 in renal caveolar and non-caveolar fractions in experimental type 1 diabetes. Physiol Res 58:563–568

    PubMed  CAS  Google Scholar 

  34. Castello-Cros R, Whitaker-Menezes D, Molchansky A et al (2011) Scleroderma-like properties of skin from caveolin-1-deficient mice: implications for new treatment strategies in patients with fibrosis and systemic sclerosis. Cell Cycle 10:2140–2150

    Article  PubMed  CAS  Google Scholar 

  35. Murata T, Lin MI, Huang Y et al (2007) Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. J Exp Med 204:2373–2382

    Article  PubMed  CAS  Google Scholar 

  36. Tourkina E, Richard M, Oates J et al (2010) Caveolin-1 regulates leucocyte behaviour in fibrotic lung disease. Ann Rheum Dis 69:1220–1226

    Article  PubMed  CAS  Google Scholar 

  37. Tourkina E, Richard M, Gooz P et al (2008) Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol 294:L843–L861

    Article  PubMed  CAS  Google Scholar 

  38. Wang XM, Zhang Y, Kim HP et al (2006) Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J Exp Med 203:2895–2906

    Article  PubMed  CAS  Google Scholar 

  39. Shivshankar P, Brampton C, Miyasato S, Kasper M, Thannickal VJ, Le Saux CJ (2012) Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice. Am J Respir Cell Mol Biol 47:28–36

    Article  PubMed  CAS  Google Scholar 

  40. Park HC, Yasuda K, Ratliff B et al (2010) Postobstructive regeneration of kidney is derailed when surge in renal stem cells during course of unilateral ureteral obstruction is halted. Am J Physiol Renal Physiol 298:F357–F364

    Article  PubMed  CAS  Google Scholar 

  41. Kim S, Lee Y, Seo JE, Cho KH, Chung JH (2008) Caveolin-1 increases basal and TGF-beta1-induced expression of type I procollagen through PI-3 kinase/Akt/mTOR pathway in human dermal fibroblasts. Cell Signal 20:1313–1319

    Article  PubMed  CAS  Google Scholar 

  42. Taraboletti G, D'Ascenzo S, Borsotti P, Giavazzi R, Pavan A, Dolo V (2002) Shedding of the matrix metalloproteinases MMP-2, MMP-9, and MT1-MMP as membrane vesicle-associated components by endothelial cells. Am J Pathol 160:673–680

    Article  PubMed  CAS  Google Scholar 

  43. Sottile J, Chandler J (2005) Fibronectin matrix turnover occurs through a caveolin-1-dependent process. Mol Biol Cell 16:757–768

    Article  PubMed  CAS  Google Scholar 

  44. Wyse BD, Prior IA, Qian H et al (2003) Caveolin interacts with the angiotensin II type 1 receptor during exocytic transport but not at the plasma membrane. J Biol Chem 278:23738–23746

    Article  PubMed  CAS  Google Scholar 

  45. Moore J, McKnight AJ, Simmonds MJ et al (2010) Association of caveolin-1 gene polymorphism with kidney transplant fibrosis and allograft failure. JAMA 303:1282–1287

    Article  PubMed  CAS  Google Scholar 

  46. Testa A, Spoto B, Sanguedolce MC et al (2012) eNOS and caveolin-1 gene polymorphisms interaction and intima media thickness: a proof of concept study in ESRD patients. Am J Hypertens 25:103–108

    Article  PubMed  CAS  Google Scholar 

  47. Grayson TH, Ohms SJ, Brackenbury TD et al (2007) Vascular microarray profiling in two models of hypertension identifies caveolin-1, Rgs2 and Rgs5 as antihypertensive targets. BMC Genomics 8:404

    Article  PubMed  Google Scholar 

  48. Tourkina E, Hoffman S (2012) Caveolin-1 signaling in lung fibrosis. Open Rheumatol J 6:116–122

    Article  PubMed  CAS  Google Scholar 

  49. Chidlow JH Jr, Greer JJ, Anthoni C et al (2009) Endothelial caveolin-1 regulates pathologic angiogenesis in a mouse model of colitis. Gastroenterology 136:575–584

    Article  PubMed  CAS  Google Scholar 

  50. Bernatchez P, Sharma A, Bauer PM, Marin E, Sessa WC (2011) A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice. J Clin Invest 121:3747–3755

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge St Joseph’s Healthcare for its support of nephrology research and thank V. Falanga (University of Miami, Miami, FL, USA) for providing the collagen 1 A1 promoter luciferase construct. We also thank M. Walsh (McMaster University) for assistance with statistical analysis for RhoA immunohistochemistry quantification.

Funding

J. C. Krepinsky gratefully acknowledges the financial support of the Canadian Diabetes Association (CDA) and Canadian Institutes of Health Research (CIHR). G. Chen was supported by a Father Sean O’Sullivan Postdoctoral Fellowship.

Duality of interest

The authors declare there is no duality of interest associated with this manuscript.

Contribution statement

THG, GC, BG, AJI, MRJ and LU acquired data. THG and JCK performed data analysis and interpretation. JCK was responsible for the conception of the study and drafting the article. All authors provided critical input to revision of the draft and approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Krepinsky.

Additional information

T. H. Guan and G. Chen contributed equally to this study

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Fig. 1

(PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, T.H., Chen, G., Gao, B. et al. Caveolin-1 deficiency protects against mesangial matrix expansion in a mouse model of type 1 diabetic nephropathy. Diabetologia 56, 2068–2077 (2013). https://doi.org/10.1007/s00125-013-2968-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-013-2968-z

Keywords

Navigation