Skip to main content

Advertisement

Log in

Effects of Aegilops longissima chromosome 1Sl on wheat bread-making quality in two types of translocation lines

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Two wheat–Ae. longissima translocation chromosomes (1BS·1SlL and 1SlS·1BL) were transferred into three commercial wheat varieties, and the new advanced lines showed improved bread-making quality compared to their recurrent parents.

Abstract

Aegilops longissima chromosome 1Sl encodes specific types of gluten subunits that may positively affect wheat bread-making quality. The most effective method of introducing 1Sl chromosomal fragments containing the target genes into wheat is chromosome translocation. Here, a wheat–Ae. longissima 1BS·1SlL translocation line was developed using molecular marker-assisted chromosome engineering. Two types of translocation chromosomes developed in a previous study, 1BS·1SlL and 1SlS·1BL, were introduced into three commercial wheat varieties (Ningchun4, Ningchun50, and Westonia) via backcrossing with marker-assisted selection. Advanced translocation lines were confirmed through chromosome in situ hybridization and genotyping by target sequencing using the wheat 40 K system. Bread-making quality was found to be improved in the two types of advanced translocation lines compared to the corresponding recurrent parents. Furthermore, 1SlS·1BL translocation lines displayed better bread-making quality than 1BS·1SlL translocation lines in each genetic background. Further analysis revealed that high molecular weight glutenin subunit (HMW-GS) contents and expression levels of genes encoding low molecular weight glutenin subunits (LMW-GSs) were increased in 1SlS·1BL translocation lines. Gliadin and gluten-related transcription factors were also upregulated in the grains of the two types of advanced translocation lines compared to the recurrent parents. This study clarifies the impacts of specific glutenin subunits on bread-making quality and provides novel germplasm resources for further improvement of wheat quality through molecular breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the article and the supplementary information files.

References

  • Alberto C, Renato DO, Oronzo Antonio T, Carla C, Marina P, Enrico P (2003) Genetic analysis of the Aegilops longissima 3S chromosome carrying the Pm13 resistance gene. Euphytica 130:177–183

    Article  CAS  Google Scholar 

  • Anjum FM, Khan MR, Din A, Saeed M, Pasha I, Arshad MU (2007) Wheat gluten: high molecular weight glutenin subunits-structure, genetics, and relation to dough elasticity. J Food Sci 72:R56–R63

    Article  CAS  PubMed  Google Scholar 

  • Avni R, Lux T, Minz-Dub A, Millet E, Sela H, Distelfeld A, Deek J, Yu G, Steuernagel B, Pozniak C (2022) Genome sequences of three Aegilops species of the section Sitopsis reveal phylogenetic relationships and provide resources for wheat improvement. Plant J 110:179–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barak S, Mudgil D, Khatkar B (2015) Biochemical and functional properties of wheat gliadins: a review. Crit Rev Food Sci Nutr 55:357–368

    Article  CAS  PubMed  Google Scholar 

  • Blechl AE, Anderson OD (1996) Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nat Biotechnol 14:875–879

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Zang F, Xin L, Zhou Q, Wang X, Zhong Y, Huang M, Dai T, Jiang D (2022) Effects of cysteine and inorganic sulfur applications at different growth stages on grain protein and end-use quality in wheat. Foods 11:3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Duncan O, Islam S, Zhang J, Ma W, Millar AH (2021) Increased wheat protein content via introgression of an HMW glutenin selectively reshapes the grain proteome. Mol Cell Proteom, 20

  • Cenci A, D’ovidio R, Tanzarella O, Ceoloni C, Porceddu E (1999) Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat. Theor Appl Genet 98:448–454

    Article  CAS  Google Scholar 

  • Ceoloni C, Signore Gd, Ercoli L, Donini P (1992) Locating the alien chromatin segment in common wheat-Aegilops longissima mildew resistant transfers. Hereditas 116:239–245

    Article  Google Scholar 

  • Chen P, You C, Hu Y, Chen S, Zhou B, Cao A, Wang X (2013) Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breed 31:477–484

    Article  CAS  Google Scholar 

  • Chen HQ, Li SJ, Liu YW, Liu JX, Ma XL, Du LP, Wang K, Ye XG (2021) Effects of 1Dy12 subunit silencing on seed storage protein accumulation and flour-processing quality in a common wheat somatic variation line. Food Chem 335:127663

    Article  CAS  PubMed  ADS  Google Scholar 

  • Consortium IWGS, Appels R, Eversole K, Stein N, Feuillet C, Keller B, Rogers J, Pozniak CJ, Choulet F, Distelfeld A (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

  • Cui D, Wang J, Li M, Lu Y, Yan Y (2019) Functional assessment and SNP-based molecular marker development of two 1Sl-encoded HMW glutenin subunits in Aegilops longissima L. Mol Breeding 39:1–15

    Article  Google Scholar 

  • Deng X, Wang SL, Zhen SM, Zhang WY, Yan YM (2016) Identification and molecular characterization of one novel 1Sl-encoded s-type low molecular weight glutenin B-subunit from 1Sl (1B) substitution line of wheat variety Chinese Spring (Triticum aestivum). Biologia 71:1212–1222

    Article  CAS  Google Scholar 

  • Donini P, Koebner R, Ceoloni C (1995) Cytogenetic and molecular mapping of the wheat-Aegilops longissima chromatin breakpoints in powdery mildew-resistant introgression lines. Theor Appl Genet 91:738–743

    Article  CAS  PubMed  Google Scholar 

  • Du XY, Wei JL, Luo X, Liu ZG, Qian YQ, Zhu B, Weng QB, Tang H (2020) Low-molecular-weight glutenin subunit LMW-N13 improves dough quality of transgenic wheat. Food Chem 327:127048

    Article  CAS  PubMed  Google Scholar 

  • Fu T, Xu C, Li H, Wu X, Tang M, Xiao B, Lv R, Zhang Z, Gao X, Liu B (2022) Salinity tolerance in a synthetic allotetraploid wheat (SlSlAA) is similar to its higher tolerant parent Aegilops longissima (SlSl) and linked to flavonoids metabolism. Front Plant Sci 13:835498

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Molina MD, Barro F (2017) Characterization of changes in gluten proteins in low-gliadin transgenic wheat lines in response to application of different nitrogen regimes. Front Plant Sci 8:257

    Article  PubMed  PubMed Central  Google Scholar 

  • GilâHumanes J, Ozuna CV, Sousa C, Voytas DF, Barro F (2018) Low-gluten, nontransgenic wheat engineered with CRISPR/Cas9. Plant Biotechnol J 16:902–910

    Article  Google Scholar 

  • Guo X, Su HD, Shi QH, Fu SL, Wang J, Zhang XQ, Hu ZM, Han FP (2016) De novo centromere formation and centromeric sequence expansion in wheat and its wide hybrids. PLoS Genet 12:e1005997

    Article  PubMed  PubMed Central  Google Scholar 

  • Guzmán C, Crossa J, Mondal S, Govindan V, Huerta J, Crespo-Herrera L, Vargas M, Singh RP, Ibba MI (2022) Effects of glutenins (Glu-1 and Glu-3) allelic variation on dough properties and bread-making quality of CIMMYT bread wheat breeding lines. Field Crop Res 284:108585

    Article  Google Scholar 

  • Hospital F (2005) Selection in backcross programmes. Philos Trans Roy Soc b Biol Sci 360:1503–1511

    Article  CAS  Google Scholar 

  • Hu JX, Wang J, Deng X, Yan YM (2019) Cloning and characterization of special HMW glutenin subunit genes from Aegilops longissima L. and their potential for wheat quality improvement. 3 Biotech 9:1–13

  • Huang S, Steffenson BJ, Sela H, Stinebaugh K (2018) Resistance of Aegilops longissima to the rusts of wheat. Plant Dis 102:1124–1135

    Article  PubMed  Google Scholar 

  • Jensen E (2014) Technical review: in situ hybridization. Anat Rec 297:1349–1353

    Article  Google Scholar 

  • Jiang CX, Pei YH, Zhang YZ, Li XH, Yao DN, Yan YM, Ma WJ, Hsam SLK, Zeller FJ (2008) Molecular cloning and characterization of four novel LMW glutenin subunit genes from Aegilops longissima. Triticum Dicoccoides and t Zhukovskyi Hereditas 145:92–98

    Google Scholar 

  • Jiang QT, Ma J, Wei YM, Liu YX, Lan XJ, Dai SF, Lu ZX, Zhao S, Zhao QZ, Zheng YL (2012) Novel variants of HMW glutenin subunits from Aegilops section Sitopsis species in relation to evolution and wheat breeding. BMC Plant Biol 12:1–13

    Article  CAS  Google Scholar 

  • Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Kapoor P, Chunduri V, Sharma S, Garg M (2019) Potential of Aegilops sp. for improvement of grain processing and nutritional quality in wheat (Triticum aestivum). Front Plant Sci 10:308

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation-a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Leon E, Marín S, Giménez MJ, Piston F, Rodríguez-Quijano M, Shewry PR, Barro F (2009) Mixing properties and dough functionality of transgenic lines of a commercial wheat cultivar expressing the 1Ax1, 1Dx5 and 1Dy10 HMW glutenin subunit genes. J Cereal Sci 49:148–156

    Article  CAS  Google Scholar 

  • Li YW, An XL, Yang R, Guo XM, Yue GD, Fan RC, Li B, Li ZS, Zhang KP, Dong ZY (2015) Dissecting and enhancing the contributions of high-molecular-weight glutenin subunits to dough functionality and bread quality. Mol Plant 8:332–334

    Article  CAS  PubMed  Google Scholar 

  • Li M, Wang YQ, Ma FY, Zeng J, Chang JL, Chen MJ, Li KX, Yang GX, Wang YS, He GY (2017a) Effect of extra cysteine residue of new mutant 1Ax1 subunit on the functional properties of common wheat. Sci Rep 7:7510

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Li SJ, Lin ZS, Liu C, Wang K, Du LP, Ye XG (2017b) Development and comparative genomic mapping of Dasypyrum villosum 6V# 4S-specific PCR markers using transcriptome data. Theor Appl Genet 130:2057–2068

    Article  CAS  PubMed  Google Scholar 

  • Li HH, Dong ZJ, Ma C, Xia Q, Tian XB, Sehgal S, Koo DH, Friebe B, Ma PT, Liu WX (2020a) A spontaneous wheat-Aegilops longissima translocation carrying Pm66 confers resistance to powdery mildew. Theor Appl Genet 133:1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Fu JH, Shen Q, Yang D (2020b) High-molecular-weight glutenin subunits: Genetics, structures, and relation to end use qualities. Int J Mol Sci 22:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Li HH, Tian XB, Pei SL, Men WQ, Ma C, Sehgal SK, Zhao Y, Chen Q, Wang BL, Dong ZJ (2021) Development of novel wheat–Aegilops longissima 3S1 translocations conferring powdery mildew resistance and specific molecular markers for chromosome 3S1. Plant Dis 105:2938–2945

    Article  CAS  PubMed  Google Scholar 

  • Li LF, Zhang ZB, Wang ZH, Li N, Sha Y, Wang XF, Ding N, Li Y, Zhao J, Wu Y (2022) Genome sequences of five Sitopsis species of Aegilops and the origin of polyploid wheat B subgenome. Mol Plant 15:488–503

    Article  CAS  PubMed  Google Scholar 

  • Lindsay M, Tamas L, Appels R, Skerritt J (2000) Direct evidence that the number and location of cysteine residues affect glutenin polymer structure. J Cereal Sci 31:321–333

    Article  CAS  Google Scholar 

  • Men W, Fan Z, Ma C, Zhao Y, Wang C, Tian X, Chen Q, Miao J, He J, Qian J, Sehgal SK, Li H, Liu W (2022) Mapping of the novel powdery mildew resistance gene Pm2Mb from Aegilops biuncialis based on ph1b-induced homoeologous recombination. Theor Appl Genet 135:2993–3003

    Article  CAS  PubMed  Google Scholar 

  • Millet E (2007) Exploitation of Aegilops species of section Sitopsis for wheat improvement. Israel J Plant Sci 55:277–287

    Article  Google Scholar 

  • Ni F, Zheng Y, Liu X, Yu Y, Zhang G, Epstein L, Mao X, Wu J, Yuan C, Lv B (2023) Sequencing trait-associated mutations to clone wheat rust-resistance gene YrNAM. Nat Commun 14:4353

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Payne PI (1987) The genetical basis of breadmaking quality in wheat. Asp Appl Biol 15:79–90

    Google Scholar 

  • Payne PI, Nightingale MA, Krattiger AF, Holt LM (1987) The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric 40:51–65

    Article  CAS  Google Scholar 

  • Peng YC, Zhao Y, Yu ZT, Zeng JB, Xu DG, Dong J, Ma WJ (2022) Wheat quality formation and its regulatory mechanism. Front Plant Sci 13:834654

    Article  PubMed  PubMed Central  Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu YL, Chen HQ, Zhang SX, Wang J, Du LP, Wang K, Ye XG (2022) Development of a wheat material with improved bread-making quality by overexpressing HMW-GS 1Slx2. 3* from Aegilops longissima. Crop J 10:1717–1726

    Article  Google Scholar 

  • Riley R, Chapman V (1958) Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182:713–715

    Article  ADS  Google Scholar 

  • Robasky K, Lewis NE, Church GM (2014) The role of replicates for error mitigation in next-generation sequencing. Nat Rev Genet 15:56–62

    Article  CAS  PubMed  Google Scholar 

  • Roy N, Islam S, Ma JH, Lu MQ, Torok K, Tomoskozi S, Bekes F, Lafiandra D, Appels R, Ma WJ (2018) Expressed Ay HMW glutenin subunit in Australian wheat cultivars indicates a positive effect on wheat quality. J Cereal Sci 79:494–500

    Article  CAS  Google Scholar 

  • Scott JC, Manisterski J, Sela H, Ben-Yehuda P, Steffenson BJ (2014) Resistance of Aegilops species from Israel to widely virulent African and Israeli races of the wheat stem rust pathogen. Plant Dis 98:1309–1320

    Article  PubMed  Google Scholar 

  • Sheng HY, Murray TD (2013) Identifying new sources of resistance to eyespot of wheat in Aegilops longissima. Plant Dis 97:346–353

    Article  CAS  PubMed  Google Scholar 

  • Sheng HY, See DR, Murray TD (2012) Mapping QTL for resistance to eyespot of wheat in Aegilops longissima. Theor Appl Genet 125:355–366

    Article  PubMed  Google Scholar 

  • Sheng HY, See DR, Murray TD (2014) Mapping resistance genes for Oculimacula acuformis in Aegilops longissima. Theor Appl Genet 127:2085–2093

    Article  CAS  PubMed  Google Scholar 

  • Shewry P, Tatham A (1997) Disulphide bonds in wheat gluten proteins. J Cereal Sci 25:207–227

    Article  CAS  Google Scholar 

  • Shewry P, Gilbert S, Savage A, Tatham A, Wan Y-F, Belton P, Wellner N, D’ovidio R, Bekes F, Halford N (2003) Sequence and properties of HMW subunit 1Bx20 from pasta wheat (Triticum durum) which is associated with poor end use properties. Theor Appl Genet 106:744–750

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545–15550

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Tian XB, Chen QF, Ma C, Men WQ, Liu QQ, Zhao Y, Qian JJ, Fan ZW, Miao JN, He JQ (2022) Development and characterization of Triticum aestivum-Aegilops longissima 6Sl recombinants harboring a novel powdery mildew resistance gene Pm6Sl. Front Plant Sci 13:918508

    Article  PubMed  PubMed Central  Google Scholar 

  • Visscher PM, Haley CS, Thompson R (1996) Marker-assisted introgression in backcross breeding programs. Genetics 144:1923–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waines JG, Payne PI (1987) Electrophoretic analysis of the high-molecular-weight glutenin subunits of Triticum monococcum, T. urartu, and the A genome of bread wheat (T. aestivum). Theor Appl Genet 74:71–76

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SL, Li XH, Wang K, Wang XZ, Li SS, Zhang YZ, Guo GF, Zeller FJ, Hsam SL, Yan YM (2011) Phylogenetic analysis of C, M, N, and U genomes and their relationships with Triticum and other related genomes as revealed by LMW-GS genes at Glu-3 loci. Genome 54:273–284

    Article  PubMed  Google Scholar 

  • Wang SL, Yu ZT, Cao M, Shen XX, Li N, Li XH, Ma WJ, Weißgerber H, Zeller F, Hsam S (2013) Molecular mechanisms of HMW glutenin subunits from 1Sl genome of Aegilops longissima positively affecting wheat breadmaking quality. PLoS ONE 8:e58947

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Wang KY, Lin ZS, Wang L, Wang K, Shi QH, Du LP, Ye XG (2018) Development of a set of PCR markers specific to Aegilops longissima chromosome arms and application in breeding a translocation line. Theor Appl Genet 131:13–25

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Han GH, Liu H, Yan HW, Jin YL, Cao LJ, Zhou YL, An DG (2023) Development of novel wheat-rye 6RS small fragment translocation lines with powdery mildew resistance and physical mapping of the resistance gene PmW6RS. Theor Appl Genet 136:179

    Article  CAS  PubMed  Google Scholar 

  • Wrigley CW (1996) Giant proteins with flour power. Nature 381:738–739

    Article  CAS  PubMed  ADS  Google Scholar 

  • Xu YB, Yang QN, Zheng HJ, Xu YF, Sang ZQ, Guo ZF, Peng H, Zhang C, Lan HF, Wang YB, Wu KS, Tao JJ, Zhang JN (2020) Genotyping by target sequencing (GBTS) and its applications. Sci Agric Sin 53:2983–3004

    Google Scholar 

  • Yuan J, Guo X, Hu J, Lv ZL, Han FP (2015) Characterization of two CENH 3 genes and their roles in wheat evolution. New Phytol 206:839–851

    Article  CAS  PubMed  Google Scholar 

  • Yue SJ, Li H, Li YW, Zhu YF, Guo JK, Liu YJ, Chen Y, Jia X (2008) Generation of transgenic wheat lines with altered expression levels of 1Dx5 high-molecular weight glutenin subunit by RNA interference. J Cereal Sci 47:153–161

    Article  CAS  Google Scholar 

  • Zhou JX, Ma CY, Zhen SM, Cao M, Zeller FJ, Hsam SL, Yan YM (2016) Identification of drought stress related proteins from 1Sl (1B) chromosome substitution line of wheat variety Chinese Spring. Bot Stud 57:1–10

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Profs. Yueming Yan of Capital Normal University, Beijing, China, and Yiqin Wei of Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China, for providing wheat and Ae. longissima materials.

Funding

This research was partly supported by the Department of Science and Technology of Ningxia in China (2019BBF02020) and the National Natural Science Foundation of China (31971945).

Author information

Authors and Affiliations

Authors

Contributions

XGY conceived and designed the research. XGY and FPH supervised experiments. YLQ, ZYH, and HQC conducted plant crossing and backcrossing. YLQ, ZYH, MY, HLT, and ZSL performed molecular marker screening, cytological identification, genotyping, and transcriptomic analyses. YLQ, HQC, and KW conducted protein composition analyses. YLQ, NTL, SXZ, and ZYZ cultivated wheat materials and assessed agronomic and yield traits. NTL and SXZ managed the bread-making quality evaluation. YLQ, XGY, and FPH wrote and revised the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Fangpu Han or Xingguo Ye.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The authors declare that all experiments complied with the current laws of the country in which they were performed.

Additional information

Communicated by Steven S. Xu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 804 KB)

Supplementary file2 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Han, Z., Liu, N. et al. Effects of Aegilops longissima chromosome 1Sl on wheat bread-making quality in two types of translocation lines. Theor Appl Genet 137, 2 (2024). https://doi.org/10.1007/s00122-023-04504-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04504-w

Navigation