Skip to main content
Log in

A 4.43-Kb deletion of chromosomal segment containing an ovate family protein confers long capsule in sesame (Sesamum indicum L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript
  • 4 Altmetric

Abstract

Key message

A 4.43-Kb structural variation in the sesame genome results in the deletion of the Siofp1 gene and induces the long capsule length trait.

Abstract

Capsule length (CL) has a positive effect on seed weight and yield in various agronomically important species; however, the molecular mechanism underlying long capsule trait regulation in sesame remains unknown. The inheritance analysis showed that long capsule traits (CL > 4.0 cm) were dominant over normal length (average CL = 3.0 cm) and were controlled by a single gene pair. Association mapping with a RIL population and 259 natural sesame germplasm accessions indicated that the target interval was 52,830–730,961 bp of SiChr.10 in sesame. Meanwhile, the structural variation (SV) of the association mapping revealed that only SV_414325 on chromosome 10 was significantly associated with the CL trait, with a P value of 1.1135E−19. SV_414325 represents a 4430-bp deletion from 414,325 to 418,756 bp on SiChr.10, covering Sindi_2155000 (named SiOFP1). In the normal length type, Siofp1 encodes 411 amino acids of the ovate family proteins and is highly expressed in the leaf, stem, bud, and capsule tissues of sesame. In accordance with the transcriptional repressor character, Siofp1 overexpression in transgenic Arabidopsis (T0 and T1 generations) induced a 25–39% greater shortening of silique length than the wild type (P < 0.05), as well as round cauline leaves and short carpels. These results confirm that SiOFP1 plays a key role in regulating CL trait in sesame and other flowering plants. These findings provide a theoretical and material basis for sesame capsule development and high-yield breeding research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The cDNA sequence of Siofp1 gene has been submitted to NCBI dataset (NCBI accession no. MT394498). All data supporting the conclusions of this article are provided within the article (and its Supplementary Information).

Abbreviations

CL:

Capsule length

DELs:

Deletions

DUPs:

Duplications

EMS:

Ethylmethane sulfonate

GLM:

General linear model

GN:

Grain number per capsule

GWAS:

Genome-wide association studies

INSs:

Insertions

INVs:

Inversions

InDel:

Insertion–deletion

KEGG:

Kyoto Encyclopedia of Genes and Genomes

LD:

Linkage disequilibrium

LG:

Linkage group

NR:

Non-redundant

PCA:

Principal component analysis

OFP:

Ovate family protein

QTL:

Quantitative trait loci

qRT-PCR:

Quantitative real-time PCR

RIL:

Recombinant inbred line

SV:

Structural variation

SNP:

Single nucleotide polymorphism

TRAs:

Translocations

References

  • Agrawal MM, Singh S, Wawge MN, Macwana S, Sasidharan N (2017) Correlation and path analysis for seed yield and yield attributing traits in Sesame germplasm (Sesamum indicum L.). Int J Chem Stud 5:1099–1102

    Google Scholar 

  • Akbar F, Rabbani MA, Shinwari ZK, Khan SJ (2011) Genetic divergence in sesame (Sesamum indicum L.) landraces based on qualitative and quantitative traits. Pak J Bot 43:2737–2744

    Google Scholar 

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez JP, Smyth DR (2002) CRABS CLAW and SPATULA genes regulate growth and pattern formation during gynoecium development in Arabidopsis thaliana. Int J Plant Sci 163:17–41

    CAS  Google Scholar 

  • Anderson AD, Weir BS (2007) A maximum-likelihood method for the estimation of pairwise relatedness in structured populations. Genetics 176:421–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashri A (2001) Induced mutations in sesame breeding. IAEA: Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna (Austria) Contract No: IAEA-TECDOC-1195 PP 13–20

  • Aye M, Win S, Hom NH (2018) Combining ability and heterosis studies in sesame (Sesamum indicum L.) genotypes. Int J Adv Res 6:1220–1229

    Google Scholar 

  • Bakheit BR, Ismail AA, El-Shiemy AA, Sedek FS (2001) Triple test cross analysis in four sesame crosses (Sesamum indicum L.). J Agric Sci 137:185–193

    Google Scholar 

  • Balasubramanian S, Schneitz K (2002) NOZZLE links proximal-distal and adaxial-abaxial pattern formation during ovule development in Arabidopsis thaliana. Development 129:4291–4300

    CAS  PubMed  Google Scholar 

  • Bolger AM, Marc L, Bjoern U (2014) Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman J, Smyth D (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387

    CAS  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Google Scholar 

  • Cameron DL, Baber J, Shale C, Valle-Inclan JE, Besselink N, Cuppen E, Priestley P, Papenfuss AT (2021) GRIDSS2: comprehensive characterisation of somatic structural variation using single breakend variants and structural variant phasing. Genome Biol 22:202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Zhang Y, Liu XP, Chen BY, Tu JX, Fu TD (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet 115:849–858

    CAS  PubMed  Google Scholar 

  • Chen X, Schulz-Trieglaff O, Shaw R, Barnes B, Schlesinger F, Cox AJ, Kruglyak S, Saunders CT (2015) Manta: rapid detection of structural variants and indels for clinical sequencing applications. Bioinformatics 32:1220–1222

    PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:736–743

    Google Scholar 

  • Duan YH, Ju M, Miao HM, Zhang HY (2021) The sesame genome for gene discovery in sesame. In: Miao HM, Zhang HY, Kole C (eds) The sesame genome. Springer, Cham, pp 283–290

    Google Scholar 

  • Eshed Y, Baum SF, Bowman JL (1999) Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99:199–209

    CAS  PubMed  Google Scholar 

  • Fu Y, Wei D, Dong H, He Y, Cui Y, Mei J, Wan H, Li J, Snowdon R, Friedt W, Li X, Qian W (2015) Comparative quantitative trait loci for silique length and seed weight in Brassica napus. Sci Rep 5:14407. https://doi.org/10.1038/srep14407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hackbusch J, Richter K, Müller J, Salamini F, Uhrig JF (2005) A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci USA 102(13):4908–4912. https://doi.org/10.1073/pnas.0501181102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jatothu J, Dangi KS, Kumar SS (2013) Evaluation of sesame crosses for heterosis of yield and yield attributing traits. J Trop Agric 51:84–91

    Google Scholar 

  • Jeffares DC, Jolly C, Hoti M, Speed D, Shaw L, Rallis C, Balloux F, Dessimoz C, BäHler J, Sedlazeck FJ (2017) Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat Commun 8:14061

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jimoh WA, Aroyehun HT (2011) Evaluation of cooked and mechanically defatted sesame (Sesamum indicum) seed meal as a replacer for soybean meal in the diet of African Catfish (Clarias gariepinus). Turk J Fish Aquat Sc 11:185–190

    Google Scholar 

  • Langham DR (2017) VII Capsule descriptors of sesame (Sesamum indicum L.). ResearchGate, pp 263

  • Langham DR (2018) X Sesame seed descriptors (Sesamum indicum L.). ResearchGate, pp 14

  • Layer RM, Chiang C, Quinlan AR, Hall IM (2014) LUMPY: a probabilistic framework for structural variant discovery. Genome Biol 15:84

    Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Li YG, Cai MX, Priyadarshani SVGN, Aslam M, Zhou Q, Huang XY, Wang XM, Liu YQ, Qin Y (2019) Genome-wide analysis of the YABBY transcription factor family in pineapple and functional identification of AcYABBY4 involvement in salt stress. Int J Mol Sci 20:5863

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu YY, Douglas CJ (2015) A role for OVATE FAMILY PROTEIN1 (OFP1) and OFP4 in a BLH6-KNAT7 multi-protein complex regulating secondary cell wall formation in Arabidopsis thaliana. Plant Signal Behav 10:e1033126

    PubMed  PubMed Central  Google Scholar 

  • Liu JP, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Hua W, Hu Z, Yang H, Zhang L, Li R, Deng L, Sun X, Wang X, Wang H (2015) Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed. Proc Natl Acad Sci USA 112:E5123–E5132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Makinde FM, Akinoso R (2013) Nutrient composition and effect of processing treatments on anti nutritional factors of Nigerian sesame (Sesamum indicum Linn.) cultivars. Int Food Res J 20:2293–2300

    Google Scholar 

  • Miao HM, Langham DR, Zhang HY (2021) Botanical descriptions of sesame. In: Miao HM, Zhang HY, Kole C (eds) The sesame genome. Springer, Cham, pp 19–58

    Google Scholar 

  • Mungala RA (2017) Study of combining ability for seed yield and its component in sesame (Sesamum indicum L.). Int J Pure Appl Biosci 5:775–785

    Google Scholar 

  • Poplin R, Ruano-Rubio V, DePristo MA, Fennell T, Carneiro MO, Van der Auwera GA, Kling DE, Gauthier LD, Levy-Moonshine A, Roazen D, Shakir K, Thibault J, Chandran S, Whelan CW, Lek M, Gabriel S, Daly MJ, Neale B, MacArthur DG, Banks E (2017) Scaling accurate genetic variant discovery to tens of thousands of samples. bioRxiv. https://doi.org/10.1101/201178

    Article  Google Scholar 

  • Prakash K, Naik SN (2014) Bioactive constituents as a potential agent in sesame for functional and nutritional application. J Bioresour Eng Technol 1:61–79

    Google Scholar 

  • Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909

    CAS  PubMed  Google Scholar 

  • Raikwar R (2018) Diallel crossing for assessment of yield and its components in sesame (Sesamum indicum L.). Int J Chem Stud 6:179–183

    Google Scholar 

  • Ramalingam A, Muralidhar V, Sheriff NM (1990) Combining ability studies in sesame. J Oilseeds Res 7:75–77

    Google Scholar 

  • Rausch T, Zichner T, Schlattl A, Stütz AM, Beneš V, Korbel JO (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28:333–339

    Google Scholar 

  • Raza MA, Feng LY, Iqbal N, Manaf A, Khalid MHB, Ur Rehman S, Wasaya A, Ansar M, Billah M, Yang F et al (2018) Effect of sulphur application on photosynthesis and biomass accumulation of sesame varieties under rainfed conditions. Agronomy 8:149. https://doi.org/10.3390/agronomy8080149

    Article  CAS  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley JF, Kresovich S, Goodman M, Buckler E (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sablowski R (2015) Control of patterning, growth, and differentiation by floral organ identity genes. J Exp Bot 66:1065–1073

    CAS  PubMed  Google Scholar 

  • Saxena K (2017) Genetic variability, heritability and genetic advance for the phenotypic traits in sesame (Sesamum indicum L.). Int J Pure Appl Biosci 5:1126–1131

    Google Scholar 

  • Sene B, Sarr F, Sow MS, Diouf D, Niang M, Traoré D (2017) Physico-chemical composition of the sesame variety (Sesamum indicum L.) and characterization of its derived products (seeds, oil and oilcake) in Senegal. Food Sci Qual Manag 65:5–10

    Google Scholar 

  • Shen W, Qin P, Yan M et al (2019a) Fine mapping of a silique length and seed weight-related gene in Brassica napus. Theor Appl Genet 132:2985–2996

    CAS  PubMed  Google Scholar 

  • Shen W, Qin P, Yan M, Li B, Wu Z, Wen J, Yi B, Ma C, Shen J, Fu T, Tu J (2019b) Fine mapping of a silique length- and seed weight-related gene in Brassica napus. Theor Appl Genet 132(11):2985–2996. https://doi.org/10.1007/s00122-019-03400-6

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Song J, Guo C et al (2019) A CACTA-like transposable element in the upstream region of BnaA9.CYP78A9 acts as an enhancer to increase silique length and seed weight in rapeseed. Plant J 98:524–539

    CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SC, Chang Y, Guo JJ, Chen JG (2007) Arabidopsis ovate family protein 1 is a transcriptional repressor that suppresses cell elongation. Plant J 50:858–872

    CAS  PubMed  Google Scholar 

  • Wang YK, Chang WC, Liu PF, Hsiao MK, Lin CT, Lin SM, Pan RL (2010) Ovate family protein 1 as a plant Ku70 interacting protein involving in DNA double-strand break repair. Plant Mol Biol 74(4–5):453–466. https://doi.org/10.1007/s11103-010-9685-5

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen L, Wang A et al (2016) Quantitative trait loci analysis and genome-wide comparison for silique related traits in Brassica napus. BMC Plant Biol 16:71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Zaman QU, Huang W et al (2019) QTL and candidate gene identification for silique length based on high-dense genetic map in Brassica napus L. Front Plant Sci 10:1579

    PubMed  PubMed Central  Google Scholar 

  • Wei LB, Miao HM, Li C, Duan YH, Niu JJ, Zhang TD, Zhao QY, Zhang HY (2014) Development of SNP and InDel markers via de novo transcriptome assembly in Sesamum indicum L. Mol Breeding 34:2205–2217

    CAS  Google Scholar 

  • Wei LB, Li C, Duan YH, Qu WW, Wang HL, Miao HM, Zhang HY (2019) A SNP mutation of SiCRC regulates seed number per capsule and capsule length of cs1 mutant in sesame. Int J Mol Sci 20:4056

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei LB, Miao HM, Duan YH, Zhang HY (2021) Classical genetics of sesame. In: Miao HM, Zhang HY, Kole C (eds) The sesame genome. Springer, Cham, pp 79–120

    Google Scholar 

  • Wongyai W, Juttpornpong S (1992) Indirect selection for seed weight in sesame using capsule size as a criteria. Sesame Safflower Newsl 7:4–7

    Google Scholar 

  • Wu KS, Liu HY, Yang MM, Tao Y, Ma HH, Wu WX, Zuo Y, Zhao YZ (2014) High-density genetic map construction and QTLs analysis of grain yield-related traits in Sesame (Sesamum indicum L.) based on RAD-Seq techonology. BMC Plant Biol 14:274

    PubMed  PubMed Central  Google Scholar 

  • Xiao Y, Liu D, Zhang G, Tong H, Chu C (2017) Brassinosteroids regulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in rice. Front Plant Sci 8:1698. https://doi.org/10.3389/fpls.2017.01698

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamanura KM, Nadaf HL (2009) Combining ability and gene action for yield and yield components in sesame (Sesamum indicum L.). Karnataka J Agric Sci 22:255–260

    Google Scholar 

  • Yang P, Shu C, Chen L, Xu J, Wu J, Liu K (2012) Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet 125:285–296

    PubMed  Google Scholar 

  • Yang M, Yang WJ, Gao Y, Zhang YY, Zhu XD, Zhou R, Li DH, Zhang XR, Wu WH, Wang LH (2017a) Quantitative trait locus mapping for sesame capsule size. Chin J Oil Crop Sci 39:785–793

    Google Scholar 

  • Yang Y, Shen Y, Li S, Ge X, Li Z (2017b) High density linkage map construction and QTL detection for three silique-related traits in Orychophragmus violaceus derived Brassica napus population. Front Plant Sci 8:1512

    PubMed  PubMed Central  Google Scholar 

  • Yol E (2017) Inheritance of long and dense capsule characteristics in sesame. Turk J Field Crops 22:8–13

    Google Scholar 

  • Zhang LW, Yang GS, Liu PW, Hong DF, Li SP, He QB (2011) Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet 122:21–31

    PubMed  Google Scholar 

  • Zhang HY, Miao HM, Wang L, Qu LB, Liu HY, Wang Q, Yue MW (2013) Genome sequencing of the important oilseed crop Sesamum indicum L. Genome Biol 14:401

    PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Miao HM, Li C, Wei LB, Duan YH, Ma Q, Kong JJ, Xu FF, Chang SX (2016) Ultra-dense SNP genetic map construction and identification of SiDt gene controlling the determinate growth habit in Sesamum indicum L. Sci Rep 6:31556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Miao HM, Wei LB, Li C, Duan YH, Xu FF, Qu WW, Zhao RH, Ju M, Chang SX (2018) Identification of a SiCL1 gene controlling leaf curling and capsule indehiscence in sesame via cross-population association mapping and genomic variants screening. BMC Plant Biol 18:296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang HY, Miao HM, Ju M (2019) Potential for adaptation to climate change through genomic breeding in sesame. In: Miao HM, Zhang HY, Kole C (eds) The sesame genome. Springer, Cham, pp 374–376

    Google Scholar 

  • Zhang HY, Langham DR, Miao HM (2021) Economic and academic importance of sesame. In: Miao HM, Zhang HY, Kole C (eds) The sesame genome. Springer, Cham, pp 1–18

    Google Scholar 

  • Zhao RH, Miao HM, Song WQ, Chen CB, Zhang HY (2018) Identification of sesame (Sesamum indicum L.) chromosomes using the BAC-FISH system. Plant Biol 20:85–92

    CAS  PubMed  Google Scholar 

  • Zhou X, Zhang H, Wang P, Liu Y, Zhang X, Song Y, Wang Z, Ali A, Wan L, Yang G, Hong D (2022) BnaC7.ROT3, the causal gene of cqSL-C7, mediates silique length by affecting cell elongation in Brassica napus. J Exp Bot 73(1):154–167. https://doi.org/10.1093/jxb/erab407

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the earmarked fund of China Agriculture Research System of MOF and MARA (CARS-14-1-04), the Key Project of Science and Technology in Henan Province (201300110600), the Shennong Laboratory First Class Program (SN01-2022-04), the National Natural Science Foundation of China (No. 32172094), the Henan Province Specific Professor Position Program (SPPP2022), the Innovation Scientists and Technicians Troop Construction Projects of Henan Province (2023TD04), Key Research and Development Project of Henan Province (221111520400) and Science and Technology Foundation for The Excellent Youth Scholars of Henan Academy of Agricultural Sciences (2022YQ14).

Author information

Authors and Affiliations

Authors

Contributions

ZH conceived the technical route and guided the manuscript for publishing. MH, WL and WC guided the experiments, performed the data analysis and drafted the manuscript. LC, LG, CH, NJ and GH conducted the main data analysis and experiments. TQ, JM and MQ performed the genetic experiments and participated in result validation. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Haiyang Zhang or Hongmei Miao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing financial interests.

Additional information

Communicated by Lixi Jiang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 486 KB)

Supplementary file2 (XLSX 880 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Niu, J., Wei, L. et al. A 4.43-Kb deletion of chromosomal segment containing an ovate family protein confers long capsule in sesame (Sesamum indicum L.). Theor Appl Genet 136, 221 (2023). https://doi.org/10.1007/s00122-023-04465-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04465-0

Navigation