Skip to main content
Log in

FHB resistance conferred by Fhb1 is under inhibitory regulation of two genetic loci in wheat (Triticum aestivum L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Two loci inhibiting Fhb1 resistance to Fusarium head blight were identified through genome-wide association mapping and validated in biparental populations.

Abstract

Fhb1 confers Fusarium head blight (FHB) resistance by limiting fungal spread within spikes in wheat (type II resistance). However, not all lines with Fhb1 display the expected resistance. To identify genetic factors regulating Fhb1 effect, a genome-wide association study for type II resistance was first performed with 72 Fhb1-carrying lines using the Illumina 90 K iSelect SNP chip. Of 84 significant marker-trait associations detected, more than half were repeatedly detected in at least two environments, with the SNPs distributed in one region on chromosome 5B and one on chromosome 6A. This result was validated in a collection of 111 lines with Fhb1 and 301 lines without Fhb1. We found that these two loci caused significant resistance variations solely among lines with Fhb1 by compromising the resistance. In1, the inhibitory gene on chromosome 5B, was in close linkage with Xwgrb3860 in a recombinant inbred line population derived from Nanda2419 × Wangshuibai and a double haploid (DH) population derived from R-43 (Fhb1 near isogenic line) × Biansui7 (with Fhb1 and In1); and In2, the inhibitory gene on chromosome 6A, was mapped to the Xwgrb4113–Xwgrb4034 interval using a DH population derived from R-43 × PH8901 (with Fhb1 and In2). In1 and In2 are present in all wheat-growing areas worldwide. Their frequencies in China’s modern cultivars are high but have significantly decreased in comparison with landraces. These findings are of great significance for FHB resistance breeding using Fhb1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Available upon reasonable request.

References

  • Bakhsh A, Mengistu N, Baenziger PS, Dweikat I, Wegulo SN, Rose DJ, Bai GH, Eskridge KM (2013) Effect of Fusarium head blight resistance gene Fhb1 on agronomic and end-use quality traits of hard red winter wheat. Crop Sci 53:793–801

    CAS  Google Scholar 

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21:263–265

    CAS  PubMed  Google Scholar 

  • Basnet BR, Glover KD, Ibrahim AMH, Yen Y, Chao SM (2012) A QTL on chromosome 2DS of ‘Sumai 3’ increases susceptibility to Fusarium head blight in wheat. Euphytica 186:91–101

    CAS  Google Scholar 

  • Bernardo AN, Ma H, Zhang D, Bai GH (2012) Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance. Mol Breed 29:477–488

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Google Scholar 

  • Buerstmayr H, Ban T, Anderson J (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    CAS  Google Scholar 

  • Buerstmayr M, Steiner B, Buerstmayr H (2020) Breeding for Fusarium head blight resistance in wheat-progress and challenges. Plant Breed 139:429–454

    CAS  Google Scholar 

  • Chen Y, Kistler HC, Ma Z (2019) Fusarium graminearum Trichothecene mycotoxins: biosynthesis, regulation, and management. Annu Rev Phytopathol 57:15–39

    CAS  PubMed  Google Scholar 

  • Chen Z, Cheng X, Chai L, Wang Z, Bian R, Li J, Zhao A, Xin M, Guo W, Hu Z, Peng H, Yao Y, Sun Q, Ni Z (2020) Dissection of genetic factors underlying grain size and fine mapping of QTgw.cau-7D in common wheat (Triticum aestivum L.). Theor Appl Genet 133:149–162

    CAS  PubMed  Google Scholar 

  • Chu CG, Niu ZX, Zhong SB, Chao SM, Friesen TL, Halley S, Elias EM, Dong YH, Faris JD, Xu SS (2011) Identification and molecular mapping of two QTLs with major effects for resistance to Fusarium head blight in wheat. Theor Appl Genet 123:1107–1119

    PubMed  Google Scholar 

  • Cuthbert PA, Somers DJ, Thomas J, Cloutier S, Brulé-Babel A (2006) Fine mapping Fhb1, a major gene controlling Fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theor Appl Genet 112:1465–1472

    CAS  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Google Scholar 

  • Giancaspro A, Giove SL, Zito D, Blanco A, Gadaleta A (2016) Mapping QTLs for Fusarium head blight resistance in an interspecific wheat population. Front Plant Sci 7:1381

    PubMed  PubMed Central  Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    CAS  PubMed  Google Scholar 

  • Guan P, Lu L, Jia L, Kabir MR, Zhang J, Lan T, Zhao Y, Xin M, Hu Z, Yao Y, Ni Z, Sun Q, Peng H (2018) Global QTL analysis identifies genomic regions on chromosomes 4A and 4B harboring stable loci for yield-related traits across different environments in wheat (Triticum aestivum L.). Front Plant Sci 9:529

    PubMed  PubMed Central  Google Scholar 

  • Häberle J, Schmolke M, Schweizer G, Korzun V, Ebmeyer E, Zimmermann G, Hartl L (2007) Effects of two major Fusarium head blight resistance QTL verified in a winter wheat backcross population. Crop Sci 47:1823–1831

    Google Scholar 

  • Handa H, Namiki N, Xu D, Ban T (2008) Dissecting of the FHB resistance QTL on the short arm of wheat chromosome 2D using a comparative genomic approach: from QTL to candidate gene. Mol Breed 22:71–84

    Google Scholar 

  • Hanuová R, Hsam SLK, Barto P, Zeller FJ (1996) Suppression of powdery mildew resistance gene Pm8 in Triticum aestivum L. (common wheat) cultivars carrying wheat-rye translocation T1BL·1RS. Heredity 77:383–387

    Google Scholar 

  • He XY, Singh PK, Dreisigacker S, Singh S, Lillemo M, Duveiller E (2016) Dwarfing genes Rht-B1b and Rht-D1b are associated with both type I FHB susceptibility and low anther extrusion in two bread wheat populations. PLoS ONE 11:e0162499

    PubMed  PubMed Central  Google Scholar 

  • Hiebert CW, Moscou MJ, Hewitt T, Steuernagel B, Hernández-Pinzón I, Green P, Pujol V, Zhang P, Rouse MN, Jin Y, McIntosh RA, Upadhyaya N, Zhang J, Bhavani S, Vrána J, Karafiátová M, Huang L, Fetch T, Doležel J, Wulff BBH, Lagudah E, Spielmeyer W (2020) Stem rust resistance in wheat is suppressed by a subunit of the mediator complex. Nat Commun 11:1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    PubMed  PubMed Central  Google Scholar 

  • Hurni S, Brunner S, Stirnweis D, Herren G, Peditto D, McIntosh RA, Keller B (2014) The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J 79:904–913

    CAS  PubMed  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Google Scholar 

  • Jia HY, Wan HS, Yang SH, Zhang ZZ, Kong ZX, Xue SL, Zhang LX, Ma ZQ (2013) Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theor Appl Genet 126:2123–2139

    CAS  PubMed  Google Scholar 

  • Jia HY, Zhou JY, Xue SL, Li GQ, Yan HS, Ran CF, Zhang YD, Shi JX, Jia L, Wang X, Luo J, Ma ZQ (2018) A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. Crop J 6:48–59

    Google Scholar 

  • Jiang G, Dong Y, Shi J, Ward RW (2007) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. Theor Appl Genet 115:1043–1052

    PubMed  Google Scholar 

  • Johns LE, Bebber DP, Gurr SJ, Brown NA (2022) Emerging health threat and cost of Fusarium mycotoxins in European wheat. Nat Food 3:1014–1019

    CAS  PubMed  Google Scholar 

  • Kerber ER, Green GJ (1980) Suppression of stem rust resistance in the hexaploid wheat cv. Canthatch by chromosome 7DL. Can J Bot 58:1347–1350

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lemmens M, Scholz U, Berthiller F, Dall’Asta C, Koutnik A, Schuhmacher R, Adam G, Buerstmayr H, Mesterhazy A, Krska R, Ruckenbauer P (2005) The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol Plant Microbe Interact 18:1318–1324

    CAS  PubMed  Google Scholar 

  • Li C, Zhu H, Zhang C, Lin F, Xue SL, Cao Y, Zhang ZZ, Zhang LX, Ma ZQ (2008) Mapping QTLs associated with Fusarium-damaged kernels in the Nanda 2419 × Wangshuibai population. Euphytica 163:185–191

    CAS  Google Scholar 

  • Li GQ, Zhou JY, Jia HY, Gao ZX, Fan M, Luo YJ, Zhao PT, Xue SL, Li N, Yuan Y, Ma SW, Kong ZX, Jia L, An X, Jiang G, Liu WX, Cao WJ, Zhang RR, Fan JC, Xu XW, Liu YF, Kong QQ, Zheng SH, Wang Y, Qin B, Cao SY, Ding YX, Shi JX, Yan HS, Wang X, Ran CF, Ma ZQ (2019a) Mutation of a histidine-rich calcium-binding protein gene in wheat confers resistance to Fusarium head blight. Nat Genet 51:1106–1112

    CAS  PubMed  Google Scholar 

  • Li T, Zhang H, Huang Y, Su Z, Deng Y, Liu H, Mai C, Yu G, Li H, Yu L, Zhu T, Yang L, Li H, Zhou Y (2019b) Effects of the Fhb1 gene on Fusarium head blight resistance and agronomic traits of winter wheat. Crop J 7:799–808

    Google Scholar 

  • Lin F, Kong ZX, Zhu HL, Xue SL, Wu JZ, Tian DG, Wei JB, Zhang CQ, Ma ZQ (2004) Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 × Wangshuibai population. I. Type II Resistance Theor Appl Genet 109:1504–1511

    CAS  PubMed  Google Scholar 

  • Lin F, Xue SL, Tian DG, Li CJ, Cao Y, Zhang ZZ, Zhang CQ, Ma ZQ (2008) Mapping chromosomal regions affecting flowering time in a spring wheat RIL population. Euphytica 164:769–777

    Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1992) Constructing genetic maps with MAPMAKER/EXP Version 3.0 Technical Report, 3rd edn. Whitehead Institute, Cambridge, MA

    Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Mapping genes controlling quantitative traits using MAPMAKER/QTL version 1. 1: a tutorial and reference manual, 2nd edn. Whitehead Institute, Cambridge, MA

    Google Scholar 

  • Liu G, Jia L, Lu L, Qin D, Zhang J, Guan P, Ni Z, Yao Y, Sun Q, Peng H (2014) Mapping QTLs of yield-related traits using RIL population derived from common wheat and Tibetan semi-wild wheat. Theor Appl Genet 127:2415–2432

    CAS  PubMed  Google Scholar 

  • Liu RH, Meng JL (2003) MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas 25:317–321

    Google Scholar 

  • Liu S, Zhang X, Pumphrey MO, Stack RW, Gill BS, Anderson JA (2006) Complex microcolinearity among wheat, rice, and barley revealed by fine mapping of the genomic region harboring a major QTL for resistance to Fusarium head blight in wheat. Funct Integr Genomic 6:83–89

    CAS  Google Scholar 

  • Liu S, Pumphrey MO, Gill BS, Trick HN, Zhang JX, Dolezel J, Chalhoub B, Anderson JA (2008) Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat. Cereal Res Commun 36:195–201

    CAS  Google Scholar 

  • Liu W, Liu Z, Huang C, Lu M, Liu J, Yang Q (2016) Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years. Plant Prot 42:1–9 (in Chinese)

    Google Scholar 

  • Liu Z, Wang Z, Zhao W, Huang D, Huang X, Sun X (1992) Sources of scab resistance in improved wheat varieties and problems in attaining improved scab resistance in China. Sci Agr Sin 25:47–52 (in Chinese)

    Google Scholar 

  • Maccaferri M, Ricci A, Salvi S, Milner SG, Noli E, Martelli PL, Casadio R, Akhunov E, Scalabrin S, Vendramin V, Ammar K, Blanco A, Desiderio F, Distelfeld A, Dubcovsky J, Fahima T, Faris J, Korol A, Massi A, Mastrangelo AM, Morgante M, Pozniak C, N’Diaye A, Xu S, Tuberosa R (2015) A high-density, SNP-based consensus map of tetraploid wheat as a bridge to integrate durum and bread wheat genomics and breeding. Plant Biotechnol J 13:648–663

    CAS  PubMed  Google Scholar 

  • Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Ormanbekova D, Lux T, Prade VM, Milner SG, Himmelbach A, Mascher M, Bagnaresi P, Faccioli P, Cozzi P, Lauria M, Lazzari B, Stella A, Manconi A, Gnocchi M, Moscatelli M, Avni R, Deek J, Biyiklioglu S, Frascaroli E, Corneti S, Salvi S, Sonnante G, Desiderio F, Marè C, Crosatti C, Mica E, Özkan H, Kilian B, De Vita P, Marone D, Joukhadar R, Mazzucotelli E, Nigro D, Gadaleta A, Chao S, Faris JD, Melo ATO, Pumphrey M, Pecchioni N, Milanesi L, Wiebe K, Ens J, MacLachlan RP, Clarke JM, Sharpe AG, Koh CS, Liang KYH, Taylor GJ, Knox R, Budak H, Mastrangelo AM, Xu SS, Stein N, Hale I, Distelfeld A, Hayden MJ, Tuberosa R, Walkowiak S, Mayer KFX, Ceriotti A, Pozniak CJ, Cattivelli L (2019) Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet 51:885–895

    CAS  PubMed  Google Scholar 

  • Ma ZQ, Sorrells ME (1995) Genetic analysis of fertility restoration in wheat using restriction fragment length polymorphisms. Crop Sci 35:1137–1143

    CAS  Google Scholar 

  • Ma ZQ, Röder MS, Sorrells ME (1996) Frequencies and sequence characteristics of di, tri, and tetranucleotide microsatellites in wheat. Genome 39:123–130

    CAS  PubMed  Google Scholar 

  • Ma ZQ, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q (2007) Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Genet Genomics 277:31–42

    CAS  PubMed  Google Scholar 

  • Ma ZQ, Xie Q, Li GQ, Jia HY, Zhou JY, Kong ZX, Li N, Yuan Y (2020) Germplasms, genetics and genomics for better control of disastrous wheat Fusarium head blight. Theor Appl Genet 133:1541–1568

    PubMed  Google Scholar 

  • Miedaner T, Wilde F, Steiner B, Buerstmayr H, Korzun V, Ebmeyer E (2006) Stacking quantitative trait loci (QTL) for Fusarium head blight resistance from non–adapted sources in a European elite spring wheat background and assessing their effects on deoxynivalenol (DON) content and disease severity. Theor Appl Genet 112:562–569

    CAS  PubMed  Google Scholar 

  • Nelson JC, Singh RP, Autrique JE, Sorrells ME (1997) Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci 37:1928–1935

    CAS  Google Scholar 

  • Parry DW, Jenkinson P, McLeod L (1995) Fusarium ear blight (scab) in small grain cereals—a review. Plant Pathol 44:207–238

    Google Scholar 

  • Perez-Lara E, Semagn K, Chen H, Iqbal M, N’Diaye A, Kamran A, Navabi A, Pozniak C, Spaner D (2016) QTLs associated with agronomic traits in the Cutler × AC Barrie spring wheat mapping population using single nucleotide polymorphic markers. PLoS ONE 11:e0160623

    PubMed  PubMed Central  Google Scholar 

  • Petersen S, Lyerly JH, Maloney PV, Brown-Guedira G, Cowger C, Costa JM, Dong Y, Murphy JP (2016) Mapping of Fusarium head blight resistance quantitative trait loci in winter wheat cultivar NC-Neuse. Crop Sci 56:1473–1483

    CAS  Google Scholar 

  • Prat N, Guilbert C, Prah U, Wachter E, Steiner B, Langin T, Robert O, Buerstmayr H (2017) QTL mapping of Fusarium head blight resistance in three related durum wheat populations. Theor Appl Genet 130:13–27

    PubMed  Google Scholar 

  • Pumphrey MO, Bernardo R, Anderson JA (2007) Validating the QTL for Fusarium head blight resistance in near-isogenic wheat lines developed from breeding populations. Crop Sci 47:200–206

    CAS  Google Scholar 

  • Ramya P, Chaubal A, Kulkarni K, Gupta L, Kadoo N, Dhaliwal HS, Chhuneja P, Lagu M, Gupta V (2010) QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J Appl Genet 51:421–429

    CAS  PubMed  Google Scholar 

  • Salameh A, Buerstmayr M, Steiner B, Neumayer A, Lemmens M, Buerstmayr H (2011) Effects of introgression of two QTL for Fusarium head blight resistance from Asian spring wheat by marker-assisted backcrossing into European winter wheat on Fusarium head blight resistance, yield and quality traits. Mol Breed 28:485–494

    Google Scholar 

  • Sari E, Berraies S, Knox RE, Singh AK, Ruan YF, Cuthbert RD, Pozniak CJ, Henriquez MA, Kumar S, Burt AJ, N’Diaye A, Konkin DJ, Cabral AL, Campbell HL, Wiebe K, Condie J, Lokuruge P, Meyer B, Fedak G, Clarke FR, Clarke JM, Somers DJ, Fobert PR (2018) High density genetic mapping of Fusarium head blight resistance QTL in tetraploid wheat. PLoS ONE 13:e0204362

    PubMed  PubMed Central  Google Scholar 

  • Schmolke M, Zimmermann G, Buerstmayr H, Schweizer G, Miedaner T, Korzun V, Ebmeyer E, Hartl L (2005) Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx. Theor Appl Genet 111:747–756

    CAS  PubMed  Google Scholar 

  • Schweiger W, Steiner B, Vautrin S, Nussbaumer T, Siegwart G, Zamini M, Jungreithmeier F, Gratl V, Lemmens M, Mayer KFX, Bérgès H, Adam G, Buerstmayr H (2016) Suppressed recombination and unique candidate genes in the divergent haplotype encoding Fhb1, a major Fusarium head blight resistance locus in wheat. Theor Appl Genet 129:1607–1623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seda BF (2017) QTL Mapping for discovery and characterization of an inhibitor of Fhb1 in hexaploid wheat (Triticum aestivum). Dissertation, University of Minnesota.

  • Singh RP, Singh PK, Rutkoski J, Hodson DP, He X, Jørgensen LN, Hovmøller MS, Huerta-Espino J (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    CAS  PubMed  Google Scholar 

  • Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46:555–564

    CAS  PubMed  Google Scholar 

  • Su Z, Hao C, Wang L, Dong Y, Zhang X (2011) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223

    CAS  PubMed  Google Scholar 

  • Tang Y, Li J, Wu Y, Wei H, Li C, Yang W, Chen F (2011) Identification of QTLs for yield-related traits in the recombinant inbred line population derived from the cross between a synthetic hexaploid wheat-derived variety Chuanmai 42 and a Chinese elite variety Chuannong 16. Agricul Sci China 10:1665–1680

    CAS  Google Scholar 

  • von Der Ohe C, Ebmeyer E, Korzun V, Miedaner T (2010) Agronomic and quality performance of winter wheat backcross populations carrying non-adapted Fusarium head blight resistance QTL. Crop Sci 50:2283–2290

    Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J; International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

  • Wilson WW, McKee G, Nganje W, Dahl B, Bangsund D (2017) Economic impact of USWBSI’s Scab Initiative to reduce FHB. Agribusiness and Applied Economics Report No. 774. North Dakota State University

  • Wegulo SN (2012) Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins 4:1157–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Wang R, Tong Y, Zhao H, Xie Q, Liu D, Zhang A, Li B, Xu H, An D (2014) Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theor Appl Genet 127:59–72

    CAS  PubMed  Google Scholar 

  • Xu T, Wang Y, Di J, Sun S, Cai S, Wang Q, Zhou S, Zhu Y, Yang X, Yan W (2019) Identification of Scab-resistance wheat varieties and detection of disease resistance genes. J Triticeae Crops 39:1301–1308 (in Chinese)

    Google Scholar 

  • Xue S, Zhang Z, Lin F, Kong Z, Cao Y, Li C, Yi H, Mei M, Zhu H, Wu J, Xu H, Zhao D, Tian D, Zhang C, Ma Z (2008) A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theor Appl Genet 117:181–189

    CAS  PubMed  Google Scholar 

  • Xue SL, Li GQ, Jia HY, Lin F, Cao Y, Xu F, Tang MZ, Wang Y, Wu XY, Zhang ZZ, Zhang LX, Kong ZX, Ma ZQ (2010) Marker-assisted development and evaluation of near-isogenic lines for scab resistance QTLs of wheat. Mol Breed 25:397–405

    CAS  Google Scholar 

  • Yang ZP, Gilbert J, Fedak G, Somers DJ (2005) Genetic characterization of QTL associated with resistance to Fusarium head blight in a doubled-haploid spring wheat population. Genome 48:187–196

    CAS  PubMed  Google Scholar 

  • Zeller FJ, Hsam SLK (1996) Chromosomal location of gene suppressing powdery mildew resistance genes Pm8 and Pm17 in common wheat (Triticum aestivum L. em. Thell.). Theor Appt Genet 93:38–40

    CAS  Google Scholar 

  • Zhai H, Feng Z, Li J, Liu X, Xiao S, Ni Z, Sun Q (2016) QTL Analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Front Plant Sci 7:1617

    PubMed  PubMed Central  Google Scholar 

  • Zhai H, Feng Z, Du X, Song Y, Liu X, Qi Z, Song L, Li J, Li L, Peng H, Hu Z, Yao Y, Xin M, Xiao S, Sun Q, Ni Z (2018) A novel allele of TaGW2-A1 is located in a finely mapped QTL that increases grain weight but decreases grain number in wheat (Triticum aestivum L.). Theor Appl Genet 131:539–553

    CAS  PubMed  Google Scholar 

  • Zhao MX, Wang GM, Leng YQ, Wanjugi H, Xi PG, Grosz MD, Mergoum M, Zhong SB (2018) Molecular mapping of Fusarium head blight resistance in the spring wheat line ND2710. Phytopathology 108:972–979

    CAS  PubMed  Google Scholar 

  • Zhang WT, Boyle K, Brûlé-Babel AL, Fedak G, Gao P, Djama RZ, Polley B, Cuthbert RD, Randhawa HS, Jiang FY, Eudes F, Fobert PR (2020) Genetic characterization of multiple components contributing to Fusarium head blight resistance of FL62R1, a Canadian bread wheat developed using systemic breeding. Front Plant Sci 11:580833

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Yang Z, Ma H, Huang L, Ding F, Du Y, Jia H, Li G, Kong Z, Ran C, Gu Z, Ma Z (2021) Pyramiding of Fusarium head blight resistance quantitative trait loci, Fhb1, Fhb4, and Fhb5, in modern Chinese wheat cultivars. Front Plant Sci 12:694023

    PubMed  PubMed Central  Google Scholar 

  • Zheng N, Li G, Zhang K, Zheng H, Yang J, Yan K, Shi C, Su Z, Chen F, Wang D, Zheng H (2022) Analysis of Fhb1 gene and resistance to Fusarium head blight in 3,177 diverse wheat accessions. J Cereal Sci 104:103387

    CAS  Google Scholar 

  • Zhou WC, Kolb FL, Bai GH, Domier LL, Boze LK, Smith NJ (2003) Validation of a major QTL for scab resistance with SSR markers and use of marker-assisted selection in wheat. Plant Breed 122:40–46

    CAS  Google Scholar 

  • Zhu X, Boehm JD, Zhong S, Cai XC (2022) Genomic compatibility and inheritance of hexaploid-derived Fusarium head blight resistance genes in durum wheat. Plant Genome 15:e20183

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is partially supported by National Natural Science Foundation of China (31930081 and 32022063), National Key Research and Development Program (2021YFD1200602-3), Primary Research and Development Plan of Jiangsu Province (BE2021356), Seed Industry Revitalization Project of Jiangsu Province (JBGS2021013 and JBGS2021046) and Jiangsu collaborative innovation initiative for modern crop production. We thank all the laboratory staff and graduate students for support of all experiments.

Funding

National Natural Science Foundation of China (31930081 and 32022063), National Key Research and Development Program (2021YFD1200602-3), Primary Research and Development Plan of Jiangsu Province (BE2021356) and Seed Industry Revitalization Project of Jiangsu Province (JBGS2021013 and JBGS2021046) supported this study.

Author information

Authors and Affiliations

Authors

Contributions

GQL conduced genotyping, phenotyping, data analysis and prepared the ms; RC, RTC, XML, JXS, HYW, BYX, YYD, JKZ, XW and ZXK participated in genotyping, phenotyping; JYZ and YY helped data analysis; HYJ contributed to project implementation and reviewed the article; ZQM designed the project and reviewed the article.

Corresponding authors

Correspondence to Guoqiang Li, Haiyan Jia or Zhengqiang Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Communicated by Hermann Buerstmayr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 745 kb)

Supplementary file2 (XLS 24572 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Yuan, Y., Zhou, J. et al. FHB resistance conferred by Fhb1 is under inhibitory regulation of two genetic loci in wheat (Triticum aestivum L.). Theor Appl Genet 136, 134 (2023). https://doi.org/10.1007/s00122-023-04380-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04380-4

Navigation