Skip to main content
Log in

Epistatic interaction between CsCEN and CsSHBY in regulating indeterminate/determinate growth of lateral branch in cucumber

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Two genetic loci, det-ma (CsCEN) and det-lb, showed epistatic interaction on indeterminate/determinate growth of LB in cucumber. CsSHBY was identified as the candidate gene for det-lb locus.

Abstract

Plant architecture depends on the spatial regulation of meristems from both main axis (MA) and lateral branches (LBs). Fate (indeterminate or determinate) of these meristems is a crucial source of architectural diversity determining crop productivity and management. CENTRORADIALIS/TERMINAL FLOWER 1/SELF-PRUNING (CETS) gene family have been well known as pivotal regulators for indeterminate/determinate growth of MA. Nevertheless, genes that regulate LB indeterminacy/determinacy remained unclear. Cucumber (Cucumis sativus L.) has typical monopodial growth and multiple lateral branches. Both MA and LBs had indeterminate or determinate growth, and indeterminate/determinate growth of LB was controlled by two distinct loci, det-ma (CsCEN) and det-lb. In our study, based on bulked segregant analysis (BSA) method, the det-lb locus was mapped on a 60.6 kb region on chromosome 1 harboring only one gene CsaV3_1G044330, which encoded a putative vacuolar-sorting protein (designated as CsSHBY). Multipoint mutations in CsSHBY were identified in D082 and D226, compared with CCMC, including nonsynonymous SNP mutations and a 6-bp deletion in exons. Further, qPCR showed that CsSHBY was highly expressed in lateral bud of CCMC, suggesting that CsSHBY might play an active role in regulating indeterminate/determinate growth of LB. Genetic analyses showed that det-ma (CsCEN) had an epistatic effect on det-lb (CsSHBY), and CsCEN could activate CsSHBY promoter by Dual luciferase and GUS activity assays. Meanwhile, Cscen or Csshby was found to influence auxin contents and CsYUCs and CsPINs expression levels. These findings provided new insights into precisely optimizing plant architecture for yield improvements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included as supplementary materials.

References

  • Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:20–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar-Martínez JA, Poza-Carrión C, Cubas P (2007) Arabidopsis branched1 acts as an integrator of branching signals within axillary buds. Plant Cell 19:458–472

    PubMed  PubMed Central  Google Scholar 

  • Bennett T, Hines G, Van Rongen M, Waldie T, Sawchuk MG, Scarpella E, Ljung K, Leyser O (2016) Connective auxin transport in the shoot facilitates communication between shoot apices. PLoS Biol 14:e1002446

    PubMed  PubMed Central  Google Scholar 

  • Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 379:791–797

    CAS  PubMed  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    CAS  PubMed  Google Scholar 

  • Cazzonelli CI, Vanstraelen M, Simon S, Yin K, Carron-Arthur A, Nisar N, Tarle G, Cuttriss AJ, Searle LR, Benkova E, Mathesius U, Masle J, Friml J, Pogson BJ (2013) Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and auxin-mediated development. PLoS One 8:e70069

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Yao J, Li Y, Zhao L, Liu J, Guo Y, Wang J, Li Y, Liu Z, Lu Y, Zhang Y (2019) Nulliplex-branch, a Terminal flower 1 ortholog, controls plant growth habit in cotton. Theor Appl Genet 132:97–112

    CAS  PubMed  Google Scholar 

  • Cheng X, Li G, Tang Y, Wen J (2018) Dissection of genetic regulation of compound inflorescence development in Medicago truncatula. Development 145:dev158766

    PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Conti L, Bradley D (2007) Terminal flower 1 is a mobile signal controlling Arabidopsis architecture. Plant Cell 19:767–778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Bio 12:211–221

    CAS  Google Scholar 

  • Dou J, Wang Y, Yang H, Niu H, Liu D, Yang S, Zhu H, Sun S, Yang L (2022) Development of branchless watermelon near isogenic lines by marker assisted selection. Hortic Plant J 8:627–636

    CAS  Google Scholar 

  • Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ, Rameau C (2003) Determinate and late flowering are two terminal flower 1/Centroradialis homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–2754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galli M, Gallavotti A (2016) Expanding the regulatory network for meristem size in plants. Trends Genet 32:372–383

    CAS  PubMed  Google Scholar 

  • Greb T, Clarenz O, Schafer E, Muller D, Herrero R, Schmitz G, Theres K (2003) Molecular analysis of the Lateral Suppressor gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Gene Dev 17:1175–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hanano S, Goto K (2011) Arabidopsis terminal flower 1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23:3172–3184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hellens RP, Allan AC, Friel EN, Bolitho K, Grafton K, Templeton MD, Karunairetnam S, Gleave AP, Laing WA (2005) Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants. Plant Methods 1:13

    PubMed  PubMed Central  Google Scholar 

  • Hubbard L, McSteen P, Doebley J, Hake S (2002) Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte. Genetics 162:1927–1935

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keller T, Abbott J, Moritz T, Doerner P (2006) Arabidopsis regulator of axillary meristems1 Controls a leaf axil stem cell niche and modulates vegetative development. Plant Cell 18:598–611

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koizumi K, Gallagher KL (2013) Identification of shrubby, a short-root and scarecrow interacting protein that controls root growth and radial patterning. Development 140:1292–1300

    CAS  PubMed  Google Scholar 

  • Liu B, Watanabe S, Uchiyama T, Kong F, Kanazawa A, Xia Z, Nagamatsu A, Arai M, Yamada T, Kitamura K, Masuta C, Harada K, Abe J (2010) The soybean stem growth habit gene Dt1 is an ortholog of arabidopsis terminal flower1. Plant Physiol 153:198–210

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    CAS  PubMed  Google Scholar 

  • Lucas M, Swarup R, Paponov IA, Swarup K, Casimiro I, Lake D, Peret B, Zappala S, Maithofer S, Whitworth M, Wang JH, Ljung K, Marchant A, Sandberg G, Holdsworth MJ, Palme K, Pridmore T, Mooney S, Bennett MJ (2011) Short-root regulates primary, lateral, and adventitious root development in Arabidopsis. Plant Physiol 155:384–398

    CAS  PubMed  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360:273–277

    CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res 39:225–229

    Google Scholar 

  • Martin-Trillo M, Grandio EG, Serra F, Marcel F, Rodriguez-Buey ML, Schmitz G, Theres K, Bendahmane A, Dopazo H, Cubas P (2011) Role of tomato branched1-like genes in the control of shoot branching. Plant J 67:701–714

    CAS  PubMed  Google Scholar 

  • Mathan J, Bhattacharya J, Ranjan A (2016) Enhancing crop yield by optimizing plant developmental features. Development 143:3283–3294

    CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niwa M, Daimon Y, Kurotani K, Higo A, Pruneda-Paz JL, Breton G, Mitsuda N, Kay SA, Ohme-Takagi M, Endo M, Araki T (2013) Branched1 interacts with flowering locus T to repress the floral transition of the axillary meristems in Arabidopsis. Plant Cell 25:1228–1242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Njogu MK, Yang F, Li J, Wang X, Ogweno JO, Chen J (2020) A novel mutation in TFL1 homolog sustaining determinate growth in cucumber (Cucumis sativus L.). Theor Appl Genet 133:3323–3332

    CAS  PubMed  Google Scholar 

  • Ongaro V, Leyser O (2008) Hormonal control of shoot branching. J Exp Bot 59:67–74

    CAS  PubMed  Google Scholar 

  • Otsuga D, DeGuzman B, Prigge MJ, Drews GN, Clark SE (2001) Revoluta regulates meristem initiation at lateral positions. Plant J 25:223–236

    CAS  PubMed  Google Scholar 

  • Périlleux C, Bouché F, Randoux M, Orman-Ligeza B (2019) Turning meristems into fortresses. Trends Plant Sci 24:431–442

    PubMed  Google Scholar 

  • Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The self-pruning gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989

    CAS  PubMed  Google Scholar 

  • Raman S, Greb T, Peaucelle A, Blein T, Laufs P, Theres K (2008) Interplay of miR164, cup-shaped cotyledon genes and lateral suppressor controls axillary meristem formation in Arabidopsis thaliana. Plant J 55:65–76

    CAS  PubMed  Google Scholar 

  • Rameau C, Bertheloot J, Leduc N, Andrieu B, Foucher F, Sakr S (2015) Multiple pathways regulate shoot branching. Front Plant Sci 5:741

    PubMed  PubMed Central  Google Scholar 

  • Repinski SL, Kwak M, Gepts P (2012) The common bean growth habit gene PvTFL1y is a functional homolog of Arabidopsis TFL1. Theor Appl Genet 124:1539–1547

    CAS  PubMed  Google Scholar 

  • Schilling S, Pan S, Kennedy A, Melzer R (2018) MADS-box genes and crop domestication: the jack of all traits. J Exp Bot 69:1447–1469

    CAS  PubMed  Google Scholar 

  • Schmitz G, Tillmann E, Carriero F, Fiore C, Cellini F, Theres K (2002) The tomato blind gene encodes a MYB transcription factor that controls the formation of lateral meristems. P Natl Acad Sci USA 99:1064–1069

    CAS  Google Scholar 

  • Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K (1999) The Lateral suppressor (Ls) gene of tomato encodes a new member of the VHIID protein family. P Natl Acad Sci USA 96:290–295

    CAS  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen J, Zhang Y, Ge D, Wang Z, Song W, Gu R, Che G, Cheng Z, Liu R, Zhang X (2019) CsBRC1 inhibits axillary bud outgrowth by directly repressing the auxin efflux carrier CsPIN3 in cucumber. P Natl Acad Sci USA 116:17105–17114

    CAS  Google Scholar 

  • Si Z, Liu H, Zhu J, Chen J, Wang Q, Fang L, Gao F, Tian Y, Chen Y, Chang L, Liu B, Han Z, Zhou B, Hu Y, Huang X, Zhang T (2018) Mutation of self-pruning homologs in cotton promotes short-branching plant architecture. J Exp Bot 69:2543–2553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smet DI, Jürgens G (2007) Patterning the axis in plants-auxin in control. Curr Opin Genet Dev 17:337–343

    PubMed  Google Scholar 

  • Sohn EJ, Rojas-Pierce M, Pan S, Carter C, Serrano-Mislata A, Madueño F, Rojo E, Surpin M, Raikhel NV (2007) The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole. P Natl Acad Sci USA 104:18801–18806

    CAS  Google Scholar 

  • Takeda T, Suwa Y, Suzuki M, Kitano H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33:513–520

    CAS  PubMed  Google Scholar 

  • Teichmann T, Muhr M (2015) Shaping plant architecture. Front. Plant Sci 6:233

    Google Scholar 

  • Wang B, Smith SM, Li J (2018) Genetic regulation of shoot architecture. Annu Rev Plant Biol 69:437–468

    CAS  PubMed  Google Scholar 

  • Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) Leafy controls floral meristem identity in Arabidopsis. Cell 69:843–859

    CAS  PubMed  Google Scholar 

  • Wen C, Zhao W, Liu W, Yang L, Wang Y, Liu X, Xu Y, Ren Z, Guo Y, Li C, Li J, Weng Y, Zhang X (2019) CsTFL1 inhibits determinate growth and terminal flower formation through interaction with CsNOT2a in cucumber. Development 146:dev180166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen H, Pan J, Chen Y, Chen G, Du H, Zhang L, Zhang K, He H, Wang G, Cai R, Pan J (2021) Terminal flower 1 and terminal flower 1d respond to temperature and photoperiod signals to inhibit determinate growth in cucumber. Plant Cell Environ 44:2580–2592

    CAS  PubMed  Google Scholar 

  • Wickland DP, Hanzawa Y (2015) The flowering locus T/terminal flower 1 gene family: functional evolution and molecular mechanisms. Mol Plant 8:983–997

    CAS  PubMed  Google Scholar 

  • Zhang F, Wang Y, Irish VF (2021) Centroradialis maintains shoot meristem indeterminacy by antagonizing thorn identity1 in citrus. Curr Biol 31:1–6

    Google Scholar 

  • Zhong J, Kong F (2022) The control of compound inflorescences: insights from grasses and legumes. Trends Plant Sci 27:564–576

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for the funding support by NK2022090406, the National Key Research and Development Program of China (2020YFE0202900, 2021YFD1200201), Jiangsu Agricultural Innovation of New Cultivars (PZCZ201719), Asia Cooperation Fund project-2021, the National Natural Science Foundation of China (31902007, 31902006) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

JC conceived the project. JL and FY designed the experiments. FY and MKN performed the experiments. FY analyzed the data and wrote the draft manuscript. JC, JL, JZ, OH and FY revised the manuscript. JC, JL, JZ, CC, QL and YW supervised the research. All authors commented on the manuscript and agreed to the submission of the manuscript.

Corresponding authors

Correspondence to Junguo Zhou, Ji Li or Jinfeng Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Sanwen Huang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Njogu, M.K., Hesbon, O. et al. Epistatic interaction between CsCEN and CsSHBY in regulating indeterminate/determinate growth of lateral branch in cucumber. Theor Appl Genet 136, 112 (2023). https://doi.org/10.1007/s00122-023-04350-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04350-w

Navigation