Skip to main content
Log in

High density mapping of wheat stripe rust resistance gene QYrXN3517-1BL using QTL mapping, BSE-Seq and candidate gene analysis

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Fine mapping of a major stripe rust resistance locus QYrXN3517-1BL to a 336 kb region that includes 12 candidate genes.

Abstract

Utilization of genetic resistance is an effective strategy to control stripe rust disease in wheat. Cultivar XINONG-3517 (XN3517) has remained highly resistant to stripe rust since its release in 2008. To understand the genetic architecture of stripe rust resistance, Avocet S (AvS) × XN3517 F6 RIL population was assessed for stripe rust severity in five field environments. The parents and RILs were genotyped by using the GenoBaits Wheat 16 K Panel. Four stable QTL from XINONG-3517 were detected on chromosome arms 1BL, 2AL, 2BL, and 6BS, named as QYrXN3517-1BL, QYrXN3517-2AL, QYrXN3517-2BL, and QYrXN3517-6BS, respectively. Based on the Wheat 660 K array and bulked segregant exome sequencing (BSE-Seq), the most effective QTL on chromosome 1BL is most likely different from the known adult plant resistance gene Yr29 and was mapped to a 1.7 cM region [336 kb, including twelve candidate genes in International Wheat Genome Sequencing Consortium (IWGSC) RefSeq version 1.0]. The 6BS QTL was identified as Yr78, and the 2AL QTL was probably same as QYr.caas-2AL or QYrqin.nwafu-2AL. The novel QTL on 2BL was effective in seedling stage against the races used in phenotyping. In addition, allele-specifc quantitative PCR (AQP) marker nwafu.a5 was developed for QYrXN3517-1BL to assist marker-assisted breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data, analysis codes and wheat material used in this study are available from the corresponding author upon request.

References

  • Bai BB, Liu TG, Liu B, Gao L, Chen WQ (2018) High relative parasitic fitness of G22 derivatives is associated with the epidemic potential of wheat stripe rust in China. Plant Dis 102:483–487

    Article  PubMed  Google Scholar 

  • Chen X (2013) Review article: high-temperature adult-plant resistance, key for sustainable control of stripe rust. Amer J Plant Sci 04:608–627

    Article  Google Scholar 

  • Chen XM (2005) Epidemiology and control of stripe rust [Puccinia striiformis f. sp. tritici] on wheat. Can J Plant Pathol 27:314–337

    Article  Google Scholar 

  • Chen XM, Kang ZS (eds) (2017) Stripe rust. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Chen XM, Line RF (1995) Gene number and heritability of wheat cultivars with durable, high-temperature, adult-plant (HTAP) resistance and interaction of HTAP and race-specific seedling resistance to Puccinia striiformis. Phytopathology 85:573–578

    Article  Google Scholar 

  • Clarke JD (2009) Cetyltrimethyl ammonium bromide (CTAB) DNA miniprep for plant dna isolation. Cold Spring Harb Protoc 2009:t5177

    Article  Google Scholar 

  • Cobo N, Wanjugi H, Lagudah E, Dubcovsky J (2018) A high-resolution map of wheat QYr.ucw-1BL, an adult plant stripe rust resistance locus in the same chromosomal region as Yr29. The Plant Genome 12:1–15

    Google Scholar 

  • Dong Z, Hegarty JM, Zhang J, Zhang W, Chao S, Chen X, Zhou Y, Dubcovsky J (2017) Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arm 6BS (Yr78). Theor Appl Genet 130:2127–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu D, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen X, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gou J, Li K, Wu K, Wang X, Lin H, Cantu D, Uauy C, Dobon-Alonso A, Midorikawa T, Inoue K, Sánchez J, Fu D, Blechl A, Wallington E, Fahima T, Meeta M, Epstein L, Dubcovsky J (2015) Wheat stripe rust resistance protein WKS1 reduces the ability of the thylakoid-associated ascorbate peroxidase to detoxify reactive oxygen species. Plant Cell 27:1755–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han DJ, Wang QL, Chen XM, Zeng QD, Wu JH, Xue WB, Zhan GM, Huang LL, Kang ZS (2015) Emerging Yr26-Virulent races of Puccinia striiformis f. sp. tritici are threatening wheat production in the Sichuan Basin. China Plant Dis 99:754–760

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Liu S, Zhang Y, Xie Y, Wang X, Jiao H, Wu S, Zeng Q, Wang Q, Singh RP, Bhavani S, Kang Z, Wang C, Han D, Wu J (2021) Genome-Wide wheat 55K SNP-based mapping of stripe rust resistance loci in wheat cultivar shaannong 33 and their alleles frequencies in current chinese wheat cultivars and breeding lines. Plant Dis 105:1048–1056

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Zhang Y, Ren H, Li X, Zhang X, Zhang Z, Zhang C, Liu S, Wang X, Zeng Q, Wang Q, Singh RP, Bhavani S, Wu J, Han D, Kang Z (2022) Epistatic interaction effect between chromosome 1BL (Yr29) and a novel locus on 2AL facilitating resistance to stripe rust in Chinese wheat Changwu 357–9. Theor Appl Genet 135:2501–2513

    Article  CAS  PubMed  Google Scholar 

  • Kolmer JA, Lin M, Bai G (2012) Genetics of leaf rust resistance in the winter wheat line CI13227. Crop Sci 52:2166

    Article  Google Scholar 

  • Kolmer JA, Lagudah ES, Lillemo M, Lin M, Bai G (2015) The Lr46 gene conditions partial adult-plant resistance to stripe rust, stem rust, and powdery mildew in Thatcher wheat. Crop Sci 55:2557–2565

    Article  CAS  Google Scholar 

  • Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A Putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Kang J, Bräunlich S, Boni R, Chauhan H, Selter LL, Robinson MD, Schmid MW, Wiederhold E, Hensel G, Kumlehn J, Sucher J, Martinoia E, Keller B (2019) Abscisic acid is a substrate of the ABC transporter encoded by the durable wheat disease resistance gene Lr34. New Phytol 223:853–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lan C, Rosewarne GM, Singh RP, Herrera-Foessel SA, Huerta-Espino J, Basnet BR, Zhang Y, Yang E (2014) QTL characterization of resistance to leaf rust and stripe rust in the spring wheat line Francolin#1. Mol Breeding 34:789–803

    Article  CAS  Google Scholar 

  • Lan C, Zhang Y, Herrera-Foessel SA, Basnet BR, Huerta-Espino J, Lagudah ES, Singh RP (2015) Identification and characterization of pleiotropic and co-located resistance loci to leaf rust and stripe rust in bread wheat cultivar Sujata. Theor Appl Genet 128:549–561

    Article  CAS  PubMed  Google Scholar 

  • Li J, Dundas I, Dong C, Li G, Trethowan R, Yang Z, Hoxha S, Zhang P (2020) Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet 133:1095–1107

    Article  CAS  PubMed  Google Scholar 

  • Lillemo M, Asalf B, Singh RP, Huerta-Espino J, Chen XM, He ZH, Bjørnstad Å (2008) The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor Appl Genet 116:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Line RF, Qayoum A (1992) Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America 1968–1987. US Department of Agriculture Technical Bulletin, pp 74

  • Liu J, He Z, Wu L, Bai B, Wen W, Xie C, Xia X (2015) Genome-Wide linkage mapping of QTL for Adult-Plant resistance to stripe rust in a Chinese wheat population Linmai 2 × Zhong 892. PLoS ONE 10:e145462

    Article  Google Scholar 

  • Liu L, Wang MN, Feng JY, See DR, Chao SM, Chen XM (2018) Combination of all-stage and high-temperature adult-plant resistance QTL confers high-level, durable resistance to stripe rust in winter wheat cultivar Madsen. Theor Appl Genet 131:1835–1849

    Article  CAS  PubMed  Google Scholar 

  • Liu TG, Peng YL, Chen WQ, Zhang ZY (2010) First detection of virulence in Puccinia striiformis f. sp. tritici in China to Resistance Genes Yr24 (=Yr26) present in wheat cultivar Chuanmai 42. Plant Dis 94:1163

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen X, Pumphrey M, Dubcovsky J (2015) A Genome-Wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 5:449–465

    Article  PubMed  PubMed Central  Google Scholar 

  • McIntosh RA, Wellings CW, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO Publications, East Melbourne, pp 20–26

    Book  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. The Crop J 3:269–283

    Article  Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X, Spielmeyer W, Talbot M, Bariana H, Patrick JW, Dodds P, Singh R, Lagudah E (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498

    Article  CAS  PubMed  Google Scholar 

  • Mu J, Wu J, Liu S, Dai M, Sun D, Huang S, Wang Q, Zeng Q, Yu S, Chen L, Kang Z, Han D (2019) Genome-Wide linkage mapping reveals stripe rust resistance in common wheat (Triticum aestivum) Xinong1376. Plant Dis 103:2742–2750

    Article  CAS  PubMed  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity of leaves and stems of cereals. Can J Res 26:496–500

    Article  Google Scholar 

  • Ponce-Molina LJ, Huerta-Espino J, Singh RP, Basnet BR, Alvarado G, Randhawa MS, Lan CX, Aguilar-Rincón VH, Lobato-Ortiz R, García-Zavala JJ (2018) Characterization of leaf rust and stripe rust resistance in spring wheat ‘Chilero.’ Plant Dis 102:421–427

    Article  CAS  PubMed  Google Scholar 

  • Pont C, Leroy T, Seidel M, Tondelli A, Duchemin W, Armisen D, Lang D, Bustos-Korts D, Goué N, Balfourier F, Molnár-Láng M, Lage J, Kilian B, Özkan H, Waite D, Dyer S, Letellier T, Alaux M, Russell J, Keller B, van Eeuwijk F, Spannagl M, Mayer KFX, Waugh R, Stein N, Cattivelli L, Haberer G, Charmet G, Salse J (2019) Tracing the ancestry of modern bread wheats. Nat Genet 51:905–911

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Herrera-Foessel SA, Forrest KL, Hayden MJ, Rebetzke GJ (2012) Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor Appl Genet 124:1283–1294

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, Rebetzke GJ (2008) Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor Appl Genet 116:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Rosewarne GM, Singh RP, Huerta-Espino J, William HM, Bouchet S, Cloutier S, McFadden H, Lagudah ES (2006) Leaf tip necrosis, molecular markers and beta1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theor Appl Genet 112:500–508

    Article  CAS  PubMed  Google Scholar 

  • Singh RP, Herrera-Foessel SA, Huerta-Espino J, Bariana H, Bansal U, McCallum B, Hiebert C, Bhavani S, Singh S, Lan CX, Lagudah ES (2012) Lr34/Yr18/Sr57/Pm38/Bdv1/Ltn1 confers slow rusting, adult plant resistance to Puccinia graminis tritici. In: Chen W-Q (ed) Proceedings of the 13th international cereal rusts and powdery mildews conference, Beijing

  • Singh RP, Herrera-Foessel SA, Huerta-Espino J, Lan CX, Basnet BR, Bhavani S, Lagudah ES (2013) Pleiotropic gene Lr46/Yr29/Pm39/Ltn2 confers slow rusting, adult plant resistance to wheat stem rust fungus. In: Proceedings Borlaug global rust initiative, 2013 technical workshop, New Delhi, p 17.1, 19–22 August 2013

  • Steiner B, Buerstmayr M, Wagner C, Danler A, Eshonkulov B, Ehn M, Buerstmayr H (2019) Fine-mapping of the Fusarium head blight resistance QTL Qfhs.ifa-5A identifies two resistance QTL associated with anther extrusion. Theor Appl Genet 132:2039–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78

    Article  CAS  Google Scholar 

  • Wellings CR (2011) Global status of stripe rust: a review of historical and current threats. Euphytica 179:129–141

    Article  Google Scholar 

  • William M, Singh RP, Huerta-Espino J, Islas SO, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93:153–159

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Liu S, Wang Q, Zeng Q, Mu J, Huang S, Yu S, Han D, Kang Z (2018) Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. Theor Appl Genet 131:43–58

    Article  CAS  PubMed  Google Scholar 

  • Yuan C, Singh RP, Liu D, Randhawa MS, Huerta-Espino J, Lan C (2020) Genome-Wide mapping of adult plant resistance to leaf rust and stripe rust in CIMMYT wheat line Arableu#1. Plant Dis 104:1455–1464

    Article  PubMed  Google Scholar 

  • Zeng Q, Wu J, Liu S, Chen X, Yuan F, Su P, Wang Q, Huang S, Mu J, Han D, Kang Z, Chen XM (2019) Genome-wide mapping for stripe rust resistance loci in common wheat cultivar Qinnong 142. Plant Dis 103:439–447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Prof. R.A. McIntosh, Plant Breeding Institute, University of Sydney, for language editing and proofreading of the draft manuscript. This study was financially supported by National Key R&D Program of China (2021YFD1200600 and 2021YFD1401000), the Key R&D Program of Shaanxi Province in China (2021ZDLNY0-01), China Postdoctoral Science Foundation funding (2021M702698), Key R&D Program of Yangling Seed Industry Innovation Center, National Natural Science Foundation of China (2022T150538), and State Key Laboratory of North China Crop Improvement and Regulation (NCCIR2021KF-4).

Funding

This study was funded by the Department of Plant Protection at the University of Northwest A&F.

Author information

Authors and Affiliations

Authors

Contributions

S Huang designed and conducted the experiments, analyzed the data, and wrote the manuscript. YBZ, HR, XZ, RY, QDZ, and QLW participated in creation of the genetic populations and assisted in analysis of the SNP array data. YBZ, HR, SJL, and FPY participated in greenhouse and field experiments and contributed to genotyping. RPS, SB, and ZSK participated in revision of the manuscript. JHW, DJH and ZSK conceived and directed the project.

Corresponding authors

Correspondence to Jianhui Wu, Dejun Han or Zhensheng Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Hermann Buerstmayr.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

122_2023_4282_MOESM1_ESM.pptx

Supplementary file1: Fig. S1.Frequency distributions of stripe rust infection type (IT) and disease severity(DS) recorded in different field experiments for the wheat mapping populations AvS ×XN3517 during 2017 2018 (A, B) and 2018 2019 cropping season (C, D). Fig. S2.Collinearity analysis of QYrXN3517 1BL candidate genes using the 10+genomic website.

Supplementary file2 (XLSX 116 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Zhang, Y., Ren, H. et al. High density mapping of wheat stripe rust resistance gene QYrXN3517-1BL using QTL mapping, BSE-Seq and candidate gene analysis. Theor Appl Genet 136, 39 (2023). https://doi.org/10.1007/s00122-023-04282-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04282-5

Navigation