Skip to main content
Log in

OsHXK3 encodes a hexokinase-like protein that positively regulates grain size in rice

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We report the map-based cloning and functional characterization of SNG1, which encodes OsHXK3, a hexokinase-like protein that plays a pivotal role in controlling grain size in rice.

Abstract

Grain size is an important agronomic trait determining grain yield and appearance quality in rice. Here, we report the discovery of rice mutant short and narrow grain1 (sng1) with reduced grain length, width and weight. Map-based cloning revealed that the mutant phenotype was caused by loss of function of gene OsHXK3 that encodes a hexokinase-like (HKL) protein. OsHXK3 was associated with the mitochondria and was ubiquitously distributed in various organs, predominately in younger organs. Analysis of glucose (Glc) phosphorylation activities in young panicles and protoplasts showed that OsHXK3 was a non-catalytic hexokinase (HXK). Overexpression of OsHXK3 could not complement the Arabidopsis glucose insensitive2-1 (gin2-1) mutant, indicating that OsHXK3 lacked Glc signaling activity. Scanning electron microscopy analysis revealed that OsHXK3 affects grain size by promoting spikelet husk cell expansion. Knockout of other nine OsHXK genes except OsHXK3 individually did not change grain size, indicating that functions of OsHXKs have differentiated in rice. OsHXK3 influences gibberellin (GA) biosynthesis and homeostasis. Compared with wild type, OsGA3ox2 was significantly up-regulated and OsGA2ox1 was significantly down-regulated in young panicle of sng1, and concentrations of biologically active GAs were significantly decreased in young panicles of the mutants. The yield per plant of OsHXK3 overexpression lines (OE-4 and OE-35) was increased by 10.91% and 7.62%, respectively, compared to that of wild type. Our results provide evidence that an HXK lacking catalytic and sensory functions plays an important role in grain size and has the potential to increase yield in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proc Natl Acad Sci 96:10284–10289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W, Li Y, Liu X, Zhang H, Dong H, Zhang W, Zhang L, Yu S, Wang G, Lian X, Luo J (2014) Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet 46:714–721

    Article  CAS  PubMed  Google Scholar 

  • Cheng W, Zhang H, Zhou X, Liu H, Liu Y, Li J, Han S, Wang Y (2011) Subcellular localization of rice hexokinase (OsHXK) family members in the mesophyll protoplasts of tobacco. Biol Plantarum 55:173–177

    Article  CAS  Google Scholar 

  • Cho JI, Ryoo N, Ko S, Lee SK, Lee J, Jung KH, Lee YH, Bhoo SH, Winderickx J, An G, Hahn TR, Jeon JS (2006a) Structure, expression, and functional analysis of the hexokinase gene family in rice (Oryza sativa L.). Planta 224:598–611

    Article  CAS  PubMed  Google Scholar 

  • Cho YH, Yoo SD, Sheen J (2006b) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    Article  CAS  PubMed  Google Scholar 

  • Cho JI, Ryoo N, Eom JS, Lee DW, Kim HB, Jeong SW, Lee YH, Kwon YK, Cho MH, Bhoo SH, Hahn TR, Park YI, Hwang I, Sheen J, Jeon JS (2009) Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol 149:745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D (1999) Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Li Y (2019) Molecular, cellular and Yin-Yang regulation of grain size and number in rice. Mol Breed 39:1–25

    Article  Google Scholar 

  • Granot D, David-Schwartz R, Kelly G (2013) Hexose kinases and their role in sugar-sensing and plant development. Front Plant Sci 4:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hu DG, Sun CH, Zhang QY, An JP, You CX, Hao YJ (2016) Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. PLoS Genet 12:e1006273

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang L, Sun Q, Qin F, Li C, Zhao Y, Zhou DX (2007) Down-regulation of a SILENT INFORMATION REGULATOR2-related histone deacetylase gene, OsSRT1, induces DNA fragmentation and cell death in rice. Plant Physiol 144:1508–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Yu C, Hu J, Wang L, Dan Z, Zhou W, He C, Zeng Y, Yao G, Qi J, Zhang Z, Zhu R, Chen X, Zhu Y (2015) Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. Proc Natl Acad Sci 112:14984–14989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang JC, Leon P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon JS, Lee S, Jung KH, Jun SH, Jeong DH, Lee J, Kim C, Jang S, Yang K, Nam J et al (2000) T-DNA insertional mutagenesis for functional genomics in rice. Plant J 22:561–570

    Article  CAS  PubMed  Google Scholar 

  • Jin JB, Bae H, Kim SJ, Jin YH, Goh CH, Kim DH, Lee YJ, Tse YC, Jiang L, Hwang I (2003) The Arabidopsis dynamin-like proteins ADL1C and ADL1E play a critical role in mitochondrial morphogenesis. Plant Cell 15:2357–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kandel-Kfir M, Damari-Weissler H, German MA, Gidoni D, Mett A, Belausov E, Petreikov M, Adir N, Granot D (2006) Two newly identified membrane-associated and plastidic tomato HXKs: characteristics, predicted structure and intracellular localization. Planta 224:1341–1352

    Article  CAS  PubMed  Google Scholar 

  • Karve A, Moore BD (2009) Function of Arabidopsis hexokinase-like1 as a negative regulator of plant growth. J Exp Bot 60:4137–4149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karve A, Rauh BL, Xia X, Kandasamy M, Meagher RB, Sheen J, Moore BD (2008) Expression and evolutionary features of the hexokinase gene family in Arabidopsis. Planta 228:411–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karve R, Lauria M, Virnig A, Xia X, Rauh BL, Moore B (2010) Evolutionary lineages and functional diversification of plant hexokinases. Mol Plant 3:334–346

    Article  CAS  PubMed  Google Scholar 

  • Kelly G, David-Schwartz R, Sade N, Moshelion M, Levi A, Alchanatis V, Granot D (2012) The pitfalls of transgenic selection and new roles of AtHXK1: a high level of AtHXK1 expression uncouples hexokinase1-dependent sugar signaling from exogenous sugar. Plant Physiol 159:47–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YM, Heinzel N, Giese JO, Koeber J, Melzer M, Rutten T, Von Wiren N, Sonnewald U, Hajirezaei MR (2013) A dual role of tobacco hexokinase 1 in primary metabolism and sugar sensing. Plant Cell Environ 36:1311–1327

    Article  CAS  PubMed  Google Scholar 

  • Kim HB, Cho JI, Ryoo N, Shin DH, Park YI, Hwang YS, Lee SK, An G, Jeon JS (2016) Role of rice cytosolic hexokinase OsHXK7 in sugar signaling and metabolism. J Integr Plant Biol 58:127–135

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Kim H, Cho JI, Nguyen CD, Jeon JS (2020) Deficiency of rice hexokinase HXK5 impairs synthesis and utilization of starch in pollen grains and causes male sterility. J Exp Bot 71:116–125

    CAS  PubMed  Google Scholar 

  • Li N, Li Y (2016) Signaling pathways of seed size control in plants. Curr Opin Plant Biol 33:23–32

    Article  PubMed  Google Scholar 

  • Li J, Jiang J, Qian Q, Xu Y, Zhang C, Xiao J, Du C, Luo W, Zou G, Chen M, Huang Y, Feng Y, Cheng Z, Yuan M, Chong K (2011a) Mutation of rice BC12/GDD1, which encodes a kinesin-like protein that binds to a GA biosynthesis gene promoter, leads to dwarfism with impaired cell elongation. Plant Cell 23:628–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011b) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xu Y, Xiao J, Ma Q, Li D, Xue Z, Chong K (2011) OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice. J Plant Physiol 168:1098–1105

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen L (2017) CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10:530–532

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Hedden P, Zhang Q (2011) Heterosis in rice seedlings: its relationship to gibberellin content and expression of gibberellin metabolism and signaling genes. Plant Physiol 156:1905–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun TP (2006) Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J 45:804–818

    Article  CAS  PubMed  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  CAS  PubMed  Google Scholar 

  • Olsson T, Thelander M, Ronne H (2003) A novel type of chloroplast stromal hexokinase is the major glucose-phosphorylating enzyme in the moss Physcomitrella patens. J Biol Chem 278:44439–44447

    Article  CAS  PubMed  Google Scholar 

  • Paparelli E, Parlanti S, Gonzali S, Novi G, Mariotti L, Ceccarelli N, van Dongen JT, Kolling K, Zeeman SC, Perata P (2013) Nighttime sugar starvation orchestrates gibberellin biosynthesis and plant growth in Arabidopsis. Plant Cell 25:3760–3769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips AL, Ward DA, Uknes S, Appleford NE, Lange T, Huttly AK, Gaskin P, Graebe JE, Hedden P (1995) Isolation and expression of three gibberellin 20-oxidase cDNA clones from Arabidopsis. Plant Physiol 108:1049–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramon M, Rolland F, Sheen J (2008) Sugar Sensing and Signaling. Arabidopsis Book 6:e0117

    Article  PubMed  PubMed Central  Google Scholar 

  • Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504

    Article  CAS  PubMed  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  CAS  PubMed  Google Scholar 

  • Stitt M, Lilley RM, Gerhardt R, Heldt HW (1989) Metabolite levels in specific cells and subcellular compartments of plant leaves. Method Enzymol 174:518–552

    Article  CAS  Google Scholar 

  • Sun YW, Jiao GA, Liu ZP, Zhang X, Li JY, Guo XP, Du WM, Du JL, Francis F, Zhao YD, Xia LQ (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:298

    Article  PubMed  PubMed Central  Google Scholar 

  • Veramendi J, Fernie AR, Leisse A, Willmitzer L, Trethewey RN (2002) Potato hexokinase 2 complements transgenic Arabidopsis plants deficient in hexokinase 1 but does not play a key role in tuber carbohydrate metabolism. Plant Mol Biol 49:491–501

    Article  CAS  PubMed  Google Scholar 

  • Xu FQ, Li XR, Ruan YL (2008) RNAi-mediated suppression of hexokinase gene OsHXK10 in rice leads to non-dehiscent anther and reduction of pollen germination. Plant Sci 175:674–684

    Article  CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Re Plant Biol 59:225–251

    Article  CAS  Google Scholar 

  • Yang W, Guo Z, Huang C, Duan L, Chen G, Jiang N, Fang W, Feng H, Xie W, Lian X, Wang G, Luo Q, Zhang Q, Liu Q, Xiong L (2014) Combining high-throughput phenotyping and genome-wide association studies to reveal natural genetic variation in rice. Nat Commun 5:5087

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Zhao Y, Zhou DX (2017) Rice NAD+-dependent histone deacetylase OsSRT1 represses glycolysis and regulates the moonlighting function of GAPDH as a transcriptional activator of glycolytic genes. Nucleic Acids Res 45:12241–12255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng S, Lu J, Yu D, Li J, Zhou H, Jiang D, Liu Z, Zhuang C (2021a) Hexokinase gene OsHXK1 positively regulates leaf senescence in rice. BMC Plant Biol 21:580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng S, Ye C, Lu J, Liufu J, Lin L, Dong Z, Li J, Zhuang C (2021b) Improving the rice photosynthetic efficiency and yield by editing OsHXK1 via CRISPR/Cas9 system. Int J Mol Sci 22:9554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo J, Li J (2014) Molecular genetic dissection of quantitative trait loci regulating rice grain size. Annu Rev Genet 48:99–118

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

We thank Dr. Hua Zhang and Chennan Ge for Arabidopsis transformation. This work was supported by grants from the National Natural Science Foundation (U21A20211, 91935303, 31901529), the Ministry of Science and Technology (2021YFF1000200), the science and technology major program of Hubei Province (2021ABA011), the earmarked fund for the Agricultural Research System (CARS-01-01) of China, and the Natural Science Foundation of Anhui Province (2008085QC120).

Author information

Authors and Affiliations

Authors

Contributions

YP conducted most of the experiments; LYB isolated the sng1 mutant; WB, ZY and WKY carried out part of the phenotyping and expression analysis; LPB, GGJ, ZQL and LXH participated in the field management and logistic work; YP, LYB, LZF and HYQ designed the study; YP and HYQ analyzed the data and wrote the paper.

Corresponding author

Correspondence to Yuqing He.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest in the reported research.

Ethical approval

The authors note that this research was performed and reported in accordance with the ethical standards for scientific conduct.

Additional information

Communicated by Joshua N. Cobb.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 11370 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, P., Li, Y., Wu, B. et al. OsHXK3 encodes a hexokinase-like protein that positively regulates grain size in rice. Theor Appl Genet 135, 3417–3431 (2022). https://doi.org/10.1007/s00122-022-04189-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04189-7

Navigation