Skip to main content
Log in

The aquaporin gene PvXIP1;2 conferring drought resistance identified by GWAS at seedling stage in common bean

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A whole-genome resequencing-derived SNP dataset used for genome-wide association analysis revealed 12 loci significantly associated with drought stress based on survival rate after drought stress at seedling stage. We further confirmed the drought-related function of an aquaporin gene (PvXIP1;2) located at Locus_10.

Abstract

A variety of adverse conditions, including drought stress, severely affect common bean production. Molecular breeding for drought resistance has been proposed as an effective and practical way to improve the drought resistance of common bean. A genome-wide association analysis was conducted to identify drought-related loci based on survival rates at the seedling stage using a natural population consisting of 400 common bean accessions and 3,832,340 SNPs. The coefficient of variation ranged from 40.90 to 56.22% for survival rates in three independent experiments. A total of 12 associated loci containing 89 significant SNPs were identified for survival rates at the seedling stage. Four loci overlapped in the region of the QTLs reported to be associated with drought resistance. According to the expression profiles, gene annotations and references of the functions of homologous genes in Arabidopsis, 39 genes were considered potential candidate genes selected from 199 genes annotated within all associated loci. A stable locus (Locus_10) was identified on chromosome 11, which contained LEA, aquaporin, and proline-rich protein genes. We further confirmed the drought-related function of an aquaporin (PvXIP1;2) located at Locus_10 by expression pattern analysis, phenotypic analysis of PvXIP1;2-overexpressing Arabidopsis and Agrobacterium rhizogenes-mediated hairy root transformation systems, indicating that the association results can facilitate the efficient identification of genes related to drought resistance. These loci and their candidate genes provide a foundation for crop improvement via breeding for drought resistance in common bean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

The data supporting the findings of this study are available from the corresponding author (Jing Wu) upon request.

Abbreviations

GWASs:

Genome-wide association studies

IL:

Ion leakage

MDA:

Malondialdehyde

QTLs:

Quantitative trait loci

RIL:

Recombinant inbred line

RWC:

Relative water content

SNPs:

Single nucleotide polymorphisms

SR:

Survival rate

WT:

Wild-type

RAPD:

Random amplified polymorphic DNA

LG:

Linkage group

AFLP:

Amplified fragment length polymorphism

SSR:

Simple sequence repeat

CMLM:

Compressed mixed linear model

PC:

Principal component

LD:

Linkage disequilibrium

ABA:

Abscisic acid

CV:

Coefficient of variation

XIP:

X-intrinsic protein

MS:

Murashige and Skoog

RT-qPCR:

Quantitative real-time reverse transcription-polymerase chain reaction

References

  • Abuqamar S, Ajeb S, Sham A, Enan MR, Iratni R (2013) A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in Arabidopsis thaliana. Mol Plant Pathol 14:813–827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Acosta-Gallegos JA, White JW (1995) Phenological plasticity as an adaptation by common bean to rainfed environments. Crop Sci 35:199–204

    Google Scholar 

  • Ariani A, Gepts P (2015) Genome-wide identification and characterization of aquaporin gene family in common bean (Phaseolus vulgaris L.). Mol Genet Genomics 290:1771–1785

    CAS  PubMed  Google Scholar 

  • Asfaw A, Blair MW (2012) Quantitative trait loci for rooting pattern traits of common beans grown under drought stress versus non-stress conditions. Mol Breed 30:681–695

    Google Scholar 

  • Asfaw A, Blair MW, Struik PC (2012) Multienvironment quantitative trait Loci analysis for photosynthate acquisition, accumulation, and remobilization traits in common bean under drought stress. G3 Genes|Genomes|Genetics 2:579–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Asfaw A, Almekinders CJM, Struick PC, Blair MW (2013) Farmers’ common bean variety and seed management in the face of drought and climate instability in southern Ethiopia. Sci Res Essays 8:1022–1037

    Google Scholar 

  • Beebe SE, Rao IM, Cajiao C, Grajales M (2008) Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci 48:582–592

    Google Scholar 

  • Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA (2013) Phenotyping common beans for adaptation to drought. Front Physiol 4:1–20

    Google Scholar 

  • Berny MYTJC, Konzen ER, Medina V, Palkovic A, Ariani A, Tsai SM, Gilbert ME, Gepts P (2019) Root and shoot variation in relation to potential intermittent drought adaptation of Mesoamerican wild common bean (Phaseolus vulgaris L.). Ann Bot 124:917–932

    Google Scholar 

  • Best DJ, Roberts DE (1975) Algorithm AS 89: the upper tail probabilities of spearman’s rho. Appl Stat 24:377–379

    Google Scholar 

  • Bienert GP, Bienert MD, Jahn TP, Boutry M, Chaumont F (2011) Solanaceae XIPs are plasma membrane aquaporins that facilitate the transport of many uncharged substrates. Plant J 66:306–317

    CAS  PubMed  Google Scholar 

  • Blair MW, Galeano CH, Tovar E, Munoz Torres MC, Castrillon AV, Beebe SE, Rao IM (2012) Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant × susceptible common bean (Phaseolus vulgaris L.) cross. Mol Breeding 29:71–88

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    CAS  PubMed  Google Scholar 

  • Briñez B, Perseguini JMKC, Rosa JS, Bassi D, Gonçalves JGR, Almeida C, Paulino JFC, Blair MW, Chioratto AF, Carbonell SAM, Valdisser PAMR, Vianello RP, Benchimol-Reis LL (2017) Mapping QTLs for drought tolerance in a SEA 5 × AND 277 common bean cross with SSRs and SNP markers. Genet Mol Biol 40:813–823

    PubMed  PubMed Central  Google Scholar 

  • Broughton WJ, Hernandez G, Blair MW, Beebe SE, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)-model food legumes. Plant Soil 252:55–128

    CAS  Google Scholar 

  • Cabello JV, Chan RL (2012) The homologous homeodomain-leucine zipper transcription factors HaHB1 and AtHB13 confer tolerance to drought and salinity stresses via the induction of proteins that stabilize membranes. Plant Biotechnol J 10:815–825

    CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    CAS  PubMed  Google Scholar 

  • Deshmukh RK, Vivancos J, Guérin V, Sonah H, Labbé C, Belzile F, Bélanger RR (2013) Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Mol Biol 83:303–315

    CAS  PubMed  Google Scholar 

  • Estrada-Navarrete G, Alvarado-Affantranger X, Olivares JE, Guillén G, Díaz-Camino C, Campos F, Quinto C, Gresshoff PM, Sanchez F (2007) Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes. Nat Protoc 2:1819–1824

    CAS  PubMed  Google Scholar 

  • Fang Y, Xiong L (2015) General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72:673–689

    CAS  PubMed  Google Scholar 

  • Fujii H, Verslues PE, Zhu JK (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc Natl Acad Sci U S A 108:1717–1722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funk C, Dettinger MD, Michaelsen JC, Verdin JP, Brown ME, Barlow M, Hoell A (2008) Warming of the Indian Ocean threatens eastern and southern African food security but could be mitigated by agricultural development. Proc Natl Acad Sci U S A 105:11081–11086

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, He X, Zhao B, Zhou C, Liang Y, Ge R, Shen Y, Huang Z (2010) Overexpressing a putative aquaporin gene from wheat, TaNIP, enhances salt tolerance in transgenic Arabidopsis. Plant Cell Physiol 51:767–775

    CAS  PubMed  Google Scholar 

  • Guo Z, Yang W, Chang Y, Ma X, Tu H, Xiong F, Jiang N, Feng H, Huang C, Yang P, Zhao H, Chen G, Liu H, Luo L, Hu H, Liu Q, Xiong L (2018) Genome-wide association studies of image traits reveal genetic architecture of drought resistance in Rice. Mol Plant 11:789–805

    CAS  PubMed  Google Scholar 

  • Gupta A, Rico-Medina A, Caño-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269

    CAS  PubMed  Google Scholar 

  • Hoyos-Villegas V, Song Q, Kelly JD (2017) Genome-wide association analysis for drought tolerance and associated traits in common bean. Plant Genome. https://doi.org/10.3835/plantgenome2015.12.0122

    Article  PubMed  Google Scholar 

  • Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    CAS  PubMed  Google Scholar 

  • Kim JH, Kim WT (2013) The Arabidopsis RING E3 ubiquitin ligase AtAIRP3/LOG2 participates in positive regulation of high-salt and drought stress responses. Plant Physiol 162:1733–1749

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langridge P, Reynolds MP (2015) Genomic tools to assist breeding for drought tolerance. Curr Opin Biotechnol 32:130–135

    CAS  PubMed  Google Scholar 

  • Levitt J (1972) Responses of plant to environmental stresses. Academic Press, New York

    Google Scholar 

  • Li L, Wang LF, Wu J, Jing RL, Wang SM (2013) Drought tolerance in common bean germplasm at bud stage. J Plant Genet Res 14:600–605

    Google Scholar 

  • Li G, Santoni V, Maurel C (2014) Plant aquaporins: role in plant physiology. Biochim Biophys Acta 1840:1574–1582

    CAS  PubMed  Google Scholar 

  • Li L, Wang LF, Wu J, Jing RL, Wang SM (2015) Identification of drought resistance at seedling stage in common bean (Phaseolus vulgaris L.) varieties. Acta Agron Sin 41:963–971

    Google Scholar 

  • Li Z, Waadt R, Schroeder JI (2016) Release of GTP exchange factor mediated down-regulation of abscisic acid signal transduction through ABA-induced rapid degradation of RopGEFs. PLoS Biol 14:e1002461

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Takahashi Y, Scavo A, Brandt B, Nguyen D, Rieu P, Schroeder JI (2018) Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases. Proc Natl Acad Sci U S A 115:e4522–e4531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Mao X, Wang J, Chang X, Reynolds M, Jing R (2019) Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell Environ 42:2540–2553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Chen R, Jiang Q, Sun X, Zhang H, Hu Z (2021) GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. Plant Mol Biol 105:333–345

    CAS  PubMed  Google Scholar 

  • Lian HL, Yu X, Ye Q, Ding X, Kitagawa Y, Kwak SS, Su WA, Tang ZC (2004) The role of aquaporin RWC3 in drought avoidance in rice. Plant Cell Physiol 45:481–489

    CAS  PubMed  Google Scholar 

  • Liu S, Wang X, Wang H, Xin H, Yang X, Yan J, Li J, Tran LS, Shinozaki K, Yamaguchi-Shinozaki K, Qin F (2013) Genome-wide analysis of ZmDREB genes and their association with natural variation in drought tolerance at seedling stage of Zea mays L. PLoS Genet 9:e1003790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao HD, Wang HW, Liu SX, Li Z, Yang XH, Yan JB, Li JS, Tran LSP, Qin F (2015) A transposable element in a NAC gene is associated with drought tolerance in maize seedlings. Nat Commun 6:8326

    CAS  PubMed  Google Scholar 

  • Martins CDS, Pedrosa AM, Du DL, Goncalves LP, Yu Q, Gmitter FG, Costa MG (2015) Genome-wide characterization and expression analysis of major intrinsic proteins during abiotic and biotic stresses in sweet orange (Citrus sinensis L. Osb.). PLoS One 10(9):e0138786

    Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol Plant Mol Biol 48:399–429

    CAS  PubMed  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev of Plant Biol 59:595–624

    CAS  Google Scholar 

  • McLoughlin F, Galvan-Ampudia CS, Julkowska MM, Caarls L, van der Does D, Laurière C, Munnik T, Haring MA, Testerink C (2012) The Snf1-related protein kinases SnRK2.4 and SnRK2.10 are involved in maintenance of root system architecture during salt stress. Plant J 72:436–449

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mukeshimana G, Butare L, Cregan PB, Blair MW, Kelly JD (2014) Quantitative trait loci associated with drought tolerance in common bean. Crop Sci 54:923–938

    Google Scholar 

  • Muñoz-Perea CG, Terán H, Allen RG, Wright JL, Westermann JL, Singh SP (2006) Selection for drought resistance in dry bean landraces and cultivars. Crop Sci 46:2111–2120

    Google Scholar 

  • Park W, Scheffler BE, Bauer PJ, Campbell BT (2010) Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biology 10:142

    PubMed  PubMed Central  Google Scholar 

  • Pereira WJ, Melo ATO, Coelho ASG, Rodrigues FA, Mamidi S, Alencar SA, Lanna AC, Valdisser PAMR, Brondani C, Nascimento-Júnior IRD, Borba TCO, Vianello RP (2020) Genome-wide analysis of the transcriptional response to drought stress in root and leaf of common bean. Genet Mol Biol 43:e20180259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piao S, Ciais P, Huang Y, Shen Z, Peng S, Li J, Zhou L, Liu H, Ma Y, Ding Y, Friedlingstein P, Liu C, Tan K, Yu Y, Zhang T, Fang J (2010) The impacts of climate change on water resources and agriculture in China. Nature 467:43–51

    CAS  PubMed  Google Scholar 

  • Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Q, Guo L, Smith SM, Li J (2016) Breeding high-yield superior quality hybrid super rice by rational design. Natl Sci Rev 3:283–294

    Google Scholar 

  • Reuscher S, Akiyama M, Mori C, Aoki K, Shibata D, Shiratake K (2013) Genome-wide identification and expression analysis of aquaporins in tomato. PLoS One 8:e79052

    PubMed  PubMed Central  Google Scholar 

  • Sade N, Gebretsadik M, Seligmann R, Schwartz A, Wallach R, Moshelion M (2010) The role of tobacco Aquaporin1 in improving water use efficiency, hydraulic conductivity, and yield production under salt stress. Plant Physiol 152:245–254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MM, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider KA, Brothers M, Kelly J (1997) Marker assisted selection to improve drought resistance in common bean. Crop Sci 37:51–60

    CAS  Google Scholar 

  • Sheludko YV, Sindarovska YR, Gerasymenko IM, Bannikova MA, Kuchuk NV (2007) Comparison of several Nicotiana species as hosts for high-scale Agrobacterium-mediated transient expression. Biotechnol Bioeng 96:608–614

    CAS  PubMed  Google Scholar 

  • Singh SP (1995) Selection for water-stress tolerance in interracial populations of common bean. Crop Sci 35:118–124

    Google Scholar 

  • Singh SP, Terán H, Gutierrez JA (2001) Registration of SEA5 and SEA13 drought tolerant dry bean germplasm. Crop Sci 41:276–277

    Google Scholar 

  • Tan M, Liao F, Hou L, Wang J, Wei L, Jian H, Xu X, Li J, Liu L (2017) Genome-wide association analysis of seed germination percentage and germination index in Brassica napus L. under salt and drought stresses. Euphytica 213:40

    Google Scholar 

  • Trapp JJ, Urrea CA, Cregan PB, Miklas PN (2015) Quantitative trait loci for yield under multiple stress and drought conditions in a dry bean population. Crop Sci 55(4):1596–1607

    Google Scholar 

  • Villordo-Pineda E, González-Chavira MM, Giraldo-Carbajo P, Acosta-Gallegos JA, Caballero-Pérez J (2015) Identification of novel drought-tolerant-associated SNPs in common bean (Phaseolus vulgaris). Front Plant Sci 6:546

    PubMed  PubMed Central  Google Scholar 

  • Wada Y, Beek L, Bierkens M (2011) Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability. Hydrol Earth Syst Sci 15:3785–3805

    Google Scholar 

  • Wang HZ, Li Y, Ma J, Zhang RP, Li XY (2007) Screening indexes of drought resistance during seedling in rice. Acta Agron Sin 33:1523–1529

    CAS  Google Scholar 

  • Wang LF, Wu J, Jing RL, Cheng XZ, Wang SM (2015) Drought resistance identification of mungbean germplasm resources at seedling stage. Acta Agron Sin 41:145–153

    Google Scholar 

  • Wang XL, Wang HW, Liu SX, Ferjani A, Li JS, Yan JB, Yang XH, Qin F (2016) Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat Genet 48:1233–1241

    CAS  PubMed  Google Scholar 

  • Wang X, Gao F, Bing J, Sun W, Feng X, Ma X, Zhou Y, Zhang G (2019) Overexpression of the Jojoba aquaporin gene, ScPIP1, enhances drought and salt tolerance in transgenic Arabidopsis. Int J Mol Sci 20:153

    PubMed Central  Google Scholar 

  • Wei W, Tao JJ, Chen HW, Li QT, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2017) A histone code reader and a transcriptional activator interact to regulate genes for salt tolerance. Plant Physiol 175:1304–1320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Liang DW, Bian XH, Shen M, Xiao JH, Zhang WK, Ma B, Lin Q, Lv J, Chen X, Chen SY, Zhang JS (2019) GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean. Plant J 100:384–398

    CAS  PubMed  Google Scholar 

  • Wu J, Wang L, Li L, Wang S (2014) De novo assembly of the common bean transcriptome using short reads for the discovery of drought-responsive genes. PLoS One 10:e0119369

    Google Scholar 

  • Wu L, Chang Y, Wang L, Wu J, Wang SM (2021a) Genetic dissection of drought resistance based on root traits at the bud stage in common bean. Theor Appl Genet 134:1047–1061

    CAS  PubMed  Google Scholar 

  • Wu L, Chang YJ, Wang LF, Wang SM, Wu J (2021b) Genome-wide association analysis of drought resistance based on seed germination vigor and germination rate at the bud stage in common bean. Agrono J 113:2980–2990

    CAS  Google Scholar 

  • Wu J, Wang L, Fu J, Chen J, Wei S, Zhang S, Zhang J, Tang Y, Chen M, Zhu J, Lei L, Geng Q, Liu C, Wu L, Li X, Wang X, Wang Q, Wang Z, Xing S, Zhang H, Blair MW, Wang S (2020) Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat Genet 52:118–125

    CAS  PubMed  Google Scholar 

  • Xie Z, Li D, Wang L, Sack FD, Grotewold E (2010) Role of the stomatal development regulators FLP/MYB88 in abiotic stress responses. Plant J 64:731–739

    CAS  PubMed  Google Scholar 

  • Xu Y, Hu W, Liu J, Zhang J, Jia C, Miao H, Xu B, Jin Z (2014) A banana aquaporin gene, MaPIP1;1, is involved in tolerance to drought and salt stresses. BMC Plant Biol 14:59

    PubMed  PubMed Central  Google Scholar 

  • Zhong WP, Wu H, Chen JY, Li X, Lin H, Zhang B, Zhang ZW, Ma DL, Sun S, Li HP, Mai LP, He GD, Wang XP, Lei HP, Zhou HK, Tang L, Liu SW, Zhong SL (2017) Genome wide association study identifies novel genetic loci that modify antiplatelet effects and pharmacokinetics of clopidogrel. Clin Pharmacol Ther 101:791–802

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G, He G (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS One 7:e52439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, Shang Y, Du SY, Wang XF, Wu FQ, Xu YH, Zhang XY, Zhang DP (2007) Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19:3019–3036

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the National Key R&D Program of China (Nos. 2018YFD1000700 and 2018YFD1000704), Supported by China Agriculture Research System of MOF and MARA- Food Legumes (CARS-08), the Agricultural Science and Technology Innovation Program of CAAS.

Author information

Authors and Affiliations

Authors

Contributions

LW and JW designed the project. LW conducted the main experiments. YC, LFW and SW participated in data analysis. LW, SW and JW wrote the manuscript.

Corresponding author

Correspondence to Jing Wu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Elena Bitocchi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Chang, Y., Wang, L. et al. The aquaporin gene PvXIP1;2 conferring drought resistance identified by GWAS at seedling stage in common bean. Theor Appl Genet 135, 485–500 (2022). https://doi.org/10.1007/s00122-021-03978-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03978-w

Navigation