Skip to main content
Log in

Identification and analysis of oil candidate genes reveals the molecular basis of cottonseed oil accumulation in Gossypium hirsutum L.

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Based on the integration of QTL-mapping and regulatory network analyses, five high-confidence stable QTL regions, six candidate genes and two microRNAs that potentially affect the cottonseed oil content were discovered.

Abstract

Cottonseed oil is increasingly becoming a promising target for edible oil with its high content of unsaturated fatty acids. In this study, a recombinant inbred line (RIL) cotton population was constructed to detect quantitative trait loci (QTLs) for the cottonseed oil content. A total of 39 QTLs were detected across eight different environments, of which five QTLs were stable. Forty-three candidate genes potentially involved in carbon metabolism, fatty acid synthesis and triacylglycerol biosynthesis processes were further obtained in the stable QTL regions. Transcriptome analysis showed that nineteen of these candidate genes expressed during  the developing cottonseed ovules and may affect the cottonseed oil content. Besides, transcription factor (TF) and microRNA (miRNA) co-regulatory network analyses based on the nineteen candidate genes suggested that six genes, two core miRNAs (ghr-miR2949b and ghr-miR2949c), and one TF GhHSL1 were considered to be closely associated with the cottonseed oil content. Moreover, four vital genes were validated by quantitative real-time PCR (qRT-PCR). These results provide insights into the oil accumulation mechanism in developing cottonseed ovules through the construction of a detailed oil accumulation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Supplementary tables S1 to S9 were submitted to the online open access repository Figshare with a link https://doi.org/10.6084/m9.figshare.16536627.v1. Additional Files List: Table S1. ANOVA and broad-sense heritability analysis for cottonseed oil content. Table S2. QTLs related to cottonseed oil content identified in eight environments. Table S3. 832 genes in the five stable QTL regions. Table S4. KEGG pathway enrichment analysis of 832 genes in stable QTLs regions. Table S5. Genes list identified by BLAST with Arabidopsis thaliana oil-related genes. Table S6. The expression level (FPKM values) of candidate oil genes during developing ovules of G. hirsutum L. Table S7. Four transcription factors related to cottonseed lipid content. Table S8. The microRNA-target gene regulatory network of G. hirsutum L. Table S9. The designed primers of genes encoding the key enzymes involved in lipid biosynthesis for qRT-PCR.

References

  • Alfred Q, Liu HY, Xu HM, Li JR, Wu JG, Zhu SJ, Shi CH (2012) Mapping of quantitative trait loci for oil content in cottonseed kernel. J Genet 91:289–295

    Article  CAS  PubMed  Google Scholar 

  • Badigannavar A, Myers GO (2015) Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum). J Genet 94:87–94

    Article  CAS  PubMed  Google Scholar 

  • Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74:7779–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bo X, Guo HC, Hao Y, Shu PW, Jiang WW (2017) Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice. PLoS Genet 13:e1007110

    Article  Google Scholar 

  • Bu D, Luo H, Huo P, Wang Z, Zhang S, He Z, Wu Y, Zhao L, Liu J, Guo J, Fang S, Cao W, Yi L, Zhao Y, Kong L (2021) KOBAS-i: intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Res 49(W1):W317–W325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chao H, Wang H, Wang X, Guo L, Gu J, Zhao W, Li B, Chen D, Raboanatahiry N, Li M (2017) Genetic dissection of seed oil and protein content and identification of networks associated with oil content in Brassica napus. Sci Rep 7:46295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen N, Wang H, Abdelmageed H, Veerappan V, Tadege M, Allen RD (2020) HSI2/VAL1 and HSL1/VAL2 function redundantly to repress DOG1 expression in Arabidopsis seeds and seedlings. New Phytol 227:840–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui YP, Liu ZJ, Zhao YP, Wang YM, Huang Y, Li L, Wu H, Xu SX, Hua JP (2017) Overexpression of heteromeric GhACCase subunits enhanced oil accumulation in Upland Cotton. Plant Mol Biol Rep 35:287–297

    Article  CAS  Google Scholar 

  • Cui Y, Ma J, Liu G, Wang N, Pei W, Wu M, Li X, Zhang J, Yu J (2019) Genome-wide identification, sequence variation, and expression of the Glycerol-3-Phosphate Acyltransferase (GPAT) gene family in Gossypium. Front Genet 10:116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155-159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desrochers P, Szurmak J (2017) Long distance trade, locational dynamics and by-product development: insights from the history of the American cottonseed industry. Sustainability 9:579

    Article  Google Scholar 

  • Du Q, Gong C, Wang Q, Zhou D, Yang H, Pan W, Li B, Zhang D (2016) Genetic architecture of growth traits in populus revealed by integrated quantitative trait locus (QTL) analysis and association studies. New Phytol 209:1067–1082

    Article  CAS  PubMed  Google Scholar 

  • Du X, Liu S, Sun J, Zhang G, Jia Y, Pan Z, Xiang H, He S, Xia Q, Xiao S, Shi W, Quan Z, Liu J, Ma J, Pang B, Wang L, Sun G, Gong W, Jenkins JN, Lou X, Zhu J, Xu H (2018) Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study. BMC Genomics 19:451

    Article  PubMed  PubMed Central  Google Scholar 

  • Feng Y, Zhang Y, Wang Y, Liu J, Liu Y, Cao X, Xue S (2018) Tuning of acyl-ACP thioesterase activity directed for tailored fatty acid synthesis. Appl Microbiol Biotechnol 102:3173–3182

    Article  CAS  PubMed  Google Scholar 

  • Ge ZY, Liu XB, Liu BH et al (2011) QTL mapping of protein and oil content in soybean. Soybean Sci 30(6):901–905

    CAS  Google Scholar 

  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan YL, Rahman MU, Han J, Wang K, Wang Q, Wu H, Mei G, Zang Y, Han Z, Xu C, Shen W, Yang D, Si Z, Dai F, Zou L, Huang F, Bai Y, Zhang Y, Brodt A, Ben-Hamo H, Zhu X, Zhou B, Guan X, Zhu S, Chen X, Zhang T (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51(4):739–748

    Article  CAS  PubMed  Google Scholar 

  • Hua Z, Wan Q, Ye W, Lv Y, Wu H, Zhang T, Zhang B (2013) Genome-wide analysis of small RNA and novel microRNA discovery during fiber and seed initial development in Gossypium hirsutum. L. Plos One 8:e69743

    Article  Google Scholar 

  • Hwang S, Ray JD, Cregan PB, King CA, Davies MK, Purcell LC (2014) Genetics and mapping of quantitative traits for nodule number, weight, and size in soybean (Glycine max L. [Merr.]). Euphytica 195:419–434

    Article  CAS  Google Scholar 

  • Jasieniecka-Gazarkiewicz K, Lager I, Carlsson AS, Gutbrod K, Peisker H, Dormann P, Stymne S, Banas A (2017) Acyl-CoA: Lysophosphatidylethanolamine acyltransferase activity regulates growth of Arabidopsis. Plant Physiol 174:986–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jian Y, Hu C, Han H, Yu R, Zhen X, Ye X, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  Google Scholar 

  • Jin J, Tian F, Yang DC, Meng YQ, Kong L, Luo J, Gao G (2017) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res 45:D1040–D1045

    Article  CAS  PubMed  Google Scholar 

  • Katavic V, Shi L, Yu YY, Zhao LF, Haughn GW, Kunst L (2014) Investigation of the contribution of oil biosynthetic enzymes to seed oil content in Brassica napus and Arabidopsis thaliana. Can J Plant Sci 94:1109–1112

    Article  CAS  Google Scholar 

  • Kim D et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:R36

    Article  PubMed  PubMed Central  Google Scholar 

  • Klaus D, Ohlrogge JB, Neuhaus HE, Dormann P (2004) Increased fatty acid production in potato by engineering of acetyl-CoA carboxylase. Planta 219:389–396

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A, Griffiths-Jones S (2014) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 42(Database issue):D68-73

    Article  CAS  PubMed  Google Scholar 

  • Liu XF, Li JW, Yu XK et al (2013) Identification of QTL for cottonseed oil and protein content in Upland cotton (Gossypium hirsutum L.) based on a RIL population. Mol Plant Breeding 11(5):520–528

    CAS  Google Scholar 

  • Liu D, Liu F, Shan X, Zhang J, Tang S, Fang X, Liu X, Wang W, Tan Z, Teng Z, Zhang Z, Liu D (2015) Construction of a high-density genetic map and lint percentage and cottonseed nutrient trait QTL identification in upland cotton (Gossypium hirsutum L.). Mol Genet Genomics 290:1683–1700

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Zhao YP, Zhu HG, Zhu QH, Sun J (2017a) Simultaneous silencing of GhFAD2-1 and GhFATB enhances the quality of cottonseed oil with high oleic acid. J Plant Physiol 215:132–139

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Wu M, Zhang B, Shrestha P, Petrie J, Green AG, Singh SP (2017b) Genetic enhancement of palmitic acid accumulation in cotton seed oil through RNAi down-regulation of ghKAS2 encoding β-ketoacyl-ACP synthase II (KASII). Plant Biotechnol J 15(1):132–143

    Article  CAS  PubMed  Google Scholar 

  • Liu JY, Li P, Zhang YW, Zuo JF, Li G, Han X, Dunwell JM, Zhang YM (2020a) Three-dimensional genetic networks among seed oil-related traits, metabolites and genes reveal the genetic foundations of oil synthesis in soybean. Plant J 103(3):1103–1124

    Article  CAS  PubMed  Google Scholar 

  • Liu JY, Zhang YW, Han X, Zuo JF, Zhang Z, Shang H, Song Q, Zhang YM (2020b) An evolutionary population structure model reveals pleiotropic effects of GmPDAT for traits related to seed size and oil content in soybean. J Exp Bot 71:6988–7002

    Article  CAS  PubMed  Google Scholar 

  • Lukonge E, Labuschagne MT, Hugo A (2007) The evaluation of oil and fatty acid composition in seed of cotton accessions from various countries. J Sci Food Agr 87:340–347

    Article  CAS  Google Scholar 

  • Ma JJ, Liu J, Pei WF, Ma QF, Wang NH, Zhang X, Cui YP, Li D, Liu GY, Wu M, Zang XS, Song JK, Zhang JF, Yu SX, Yu JW (2019) Genome-wide association study of the oil content in upland cotton (Gossypium hirsutum L.) and identification of GhPRXR1, a candidate gene for a stable QTLqOC-Dt5-1. Plant Sci 286:89–97

    Article  CAS  PubMed  Google Scholar 

  • McGlew K, Shaw V, Zhang M, Kim RJ, Yang W, Shorrosh B, Suh MC, Ohlrogge J (2015) An annotated database of Arabidopsis mutants of acyl lipid metabolism. Plant Cell Rep 34:519–532

    Article  CAS  PubMed  Google Scholar 

  • Meng L, Li HH, Zhang LY, Wang JK (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3:269–283

    Article  Google Scholar 

  • Murad AM, Vianna GR, Machado AM, da Cunha NB, Coelho CM, Lacerda VA, Coelho MC, Rech EL (2014) Mass spectrometry characterisation of fatty acids from metabolically engineered soybean seeds. Anal Bioanal Chem 406:2873–2883

    Article  CAS  PubMed  Google Scholar 

  • Nikolsky Y, Bryant J (2009) Cytoscape: A community-based framework for network modeling. Methods Mol Biol 563:219

    Article  Google Scholar 

  • Panagiotopoulos IA, Pasias S, Bakker RR, de Vrije T, Papayannakos N, Claassen PA, Koukios EG (2013) Biodiesel and biohydrogen production from cotton-seed cake in a biorefinery concept. Bioresour Technol 136:78–86

    Article  CAS  PubMed  Google Scholar 

  • Patil G, Vuong TD, Kale S, Valliyodan B, Deshmukh R, Zhu C, Wu X, Bai Y, Yungbluth D, Lu F, Kumpatla S, Shannon JG, Varshney RK, Nguyen HT (2018) Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnol J 16(11):1939–1953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, Wadi L, Meyer M, Wong J, Xu C, Merico D, Bader GD (2019) Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc 14:482–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roesler K, Shintani D, Savage L, Boddupalli S, Ohlrogge J (1997) Targeting of the Arabidopsis homomeric acetyl-coenzyme a carboxylase to plastids of rapeseeds. Plant Physiol 113:75–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Said JI, Knapka JA, Song MZ, Zhang JF (2015) Cotton QTLdb: a cotton QTL database for QTL analysis, visualization, and comparison between Gossypium hirsutum and G-hirsutum x G-barbadense populations. Mol Genet Genomics 290:1615–1625

    Article  CAS  PubMed  Google Scholar 

  • Shang L, Abduweli A, Wang Y, Hua J (2016) Genetic analysis and QTL mapping of oil content and seed index using two recombinant inbred lines and two backcross populations in Upland cotton. Plant Breeding 135:224–231

    Article  CAS  Google Scholar 

  • Shang X, Cheng C, Ding J, Guo W (2017) Identification of candidate genes from the SAD gene family in cotton for determination of cottonseed oil composition. Mol Genet Genomics 292:173–186

    Article  CAS  PubMed  Google Scholar 

  • Sinha D, Murugavelh S (2016) Biodiesel production from waste cotton seed oil using low cost catalyst: Engine performance and emission characteristics. Perspectives in Science 8:237–240

    Article  Google Scholar 

  • Su Y, Liang W, Liu Z, Wang Y, Zhao Y, Ijaz B, Hua J (2017) Overexpression of GhDof1 improved salt and cold tolerance and seed oil content in Gossypium hirsutum. J Plant Physiol 218:222–234

    Article  CAS  PubMed  Google Scholar 

  • Sun FD, Zhang JH, Wang SF, Gong WK, Shi YZ, Liu AY, Li JW, Gong JW, Shang HH, Yuan YL (2012) QTL mapping for fiber quality traits across multiple generations and environments in upland cotton. Mol Breeding 30:569–582

    Article  Google Scholar 

  • Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45:W122–W129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukagoshi H, Morikami A, Nakamura K (2007) Two B3 domain transcriptional repressors prevent sugar-inducible expression of seed maturation genes in Arabidopsis seedlings. Proc Natl Acad Sci U S A 104:2543–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voelker T, Kinney AJ (2001) Variations in the biosynthesis of seed-storage lipids. Annu Rev Plant Physiol Plant Mol Biol 52:335–361

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten C, Zeng Z (2012) Composite interval mapping and multiple interval mapping: procedures and guidelines for using Windows QTL Cartographer. Methods Mol Biol 871:75–119

    Article  PubMed  Google Scholar 

  • Wang S, Wang C, Zhang XX, Chen X, Liu JJ, Jia XF, Jia SQ (2016a) Transcriptome de novo assembly and analysis of differentially expressed genes related to cytoplasmic male sterility in cabbage. Plant Physiol Biochem 105:224–232

    Article  PubMed  Google Scholar 

  • Wang SB, Wen YJ, Ren WL, Ni YL, Zhang J, Feng JY, Zhang YM (2016b) Mapping small-effect and linked quantitative trait loci for complex traits in backcross or DH populations via a multi-locus GWAS methodology. Sci Rep 6:29951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N, Ma J, Pei W, Wu M, Li H, Li X, Yu S, Zhang J, Yu J (2017) A genome-wide analysis of the lysophosphatidate acyltransferase (LPAAT) gene family in cotton: organization, expression, sequence variation, and association with seed oil content and fiber quality. BMC Genomics 18:218

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang W, Sun Y, Yang P, Cai X, Yang L, Ma J, Ou Y, Liu T, Ali I, Liu D, Zhang J, Teng Z, Guo K, Liu D, Liu F, Zhang Z (2019) A high density SLAF-seq SNP genetic map and QTL for seed size, oil and protein content in upland cotton. BMC Genomics 20:599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen YJ, Zhang YW, Zhang J, Feng JY, Dunwell JM, Zhang YM (2019) An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2. Brief Bioinform 20(5):1913–1924

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Wu G, Zhang Y, Wang Q, Zhao C, Zhang H, Jin Q, Wang X (2020) Evaluation of glycerol core aldehydes formation in edible oils under restaurant deep frying. Food Res Int 137:109696

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Zhang X, Chen B, Meng Y, Wang Y, Zhao W, Zhou Z (2017) Integrated management strategies increase cottonseed, oil and protein production: the key role of carbohydrate metabolism. Front Plant Sci 8:48

    PubMed  PubMed Central  Google Scholar 

  • Yang A, Qi M, Wang X, Wang S, Sun H, Qi DS, Zhu LY, Duan YZ, Gao X, Rajput SA, Zhang NY (2019) Refined cottonseed oil as a replacement for soybean oil in broiler diet. Food Sci Nutr 7:1027–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu J, Yu S, Fan S, Song M, Zhai H, Li X, Zhang J (2012) Mapping quantitative trait loci for cottonseed oil, protein and gossypol content in a Gossypium hirsutum × Gossypium barbadense backcross inbred line population. Euphytica 187:191–201

    Article  Google Scholar 

  • Yuan Y, Wang X, Wang L, Xing H, Wang Q, Saeed M, Tao J, Feng W, Zhang G, Song XL, Sun XZ (2018) Genome-wide association study identifies candidate genes related to seed oil composition and protein content in Gossypium hirsutum L. Front Plant Sci 9:1359

    Article  PubMed  PubMed Central  Google Scholar 

  • Yurchenko OP, Weselake RJ (2011) Involvement of low molecular mass soluble acyl-CoA-binding protein in seed oil biosynthesis. N Biotechnol 28:97–109

    Article  CAS  PubMed  Google Scholar 

  • Zang X, Pei W, Wu M, Geng Y, Wang N, Liu G, Ma J, Li D, Cui Y, Li X, Zhang J, Yu J (2018) Genome-scale analysis of the WRI-like family in Gossypium and functional characterization of GhWRI1a controlling triacylglycerol content. Front Plant Sci 9:1516

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Wang SB, Li QG, Song J, Hao YQ, Zhou L, Zheng HQ, Dunwell JM, Zhang YM (2016) An integrated bioinformatics analysis reveals divergent evolutionary pattern of oil biosynthesis in high- and low-oil plants. PLoS ONE 11:e0154882

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Zhang X, Liu G, Guo L, Qi T, Zhang M, Li X, Wang H, Tang H, Qiao X, Pei W, Shahzad K, Xing C, Zhang J, Wu J (2018a) A combined small RNA and transcriptome sequencing analysis reveal regulatory roles of miRNAs during another development of Upland cotton carrying cytoplasmic male sterile Gossypium harknessii (D2) cytoplasm. BMC Plant Biol 18:242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Dunwell JM, Zhang YM (2018b) An integrated omics analysis reveals molecular mechanisms that are associated with differences in seed oil content between Glycine max and Brassica napus. BMC Plant Biol 18(1):328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YW, Wen YJ, Dunwell JM, Zhang YM (2019) QTL.gCIMapping.GUI v2.0: An R software for detecting small-effect and linked QTLs for quantitative traits in bi-parental segregation populations. Comput Struct Biotechnol J 18:59–65

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Li J, Jamshed M, Shi Y, Liu A, Gong J, Wang S, Zhang J, Sun F, Jia F, Ge Q, Fan L, Zhang Z, Pan J, Fan S, Wang Y, Lu Q, Liu R, Deng X, Zou X, Jiang X, Liu P, Li P, Iqbal MS, Zhang C, Zou J, Chen H, Tian Q, Jia X, Wang B, Ai N, Feng G, Wang Y, Hong M, Li S, Lian W, Wu B, Hua J, Zhang C, Huang J, Xu A, Shang H, Gong W, Yuan Y (2020) Genome-wide quantitative trait loci reveal the genetic basis of cotton fibre quality and yield-related traits in a Gossypium hirsutum recombinant inbred line population. Plant Biotechnol J 18(1):239–253

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Huang Y, Wang Y, Cui Y, Liu Z, Hua J (2018) RNA interference of GhPEPC2 enhanced seed oil accumulation and salt tolerance in Upland cotton. Plant Sci 271:52–61

    Article  CAS  PubMed  Google Scholar 

  • Zhao YP, Wu N, Li WJ, Shen JL, Chen C, Li FG, Hou YX (2021) Evolution and characterization of Acetyl Coenzyme A: Diacylglycerol Acyltransferase genes in cotton identify the roles of GhDGAT3D in oil biosynthesis and fatty acid composition. Genes (basel) 12(7):1045

    Article  Google Scholar 

  • Zhou L, Luo L, Zuo JF, Yang L, Zhang L, Guang X, Niu Y, Jian J, Geng QC, Liang L, Song Q, Dunwell JM, Wu Z, Wen J, Liu YQ, Zhang YM (2016) Identification and validation of candidate genes associated with domesticated and improved traits in soybean. Plant Genome 9(2)

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by the National Natural Science Foundation of China (31621005), the National Agricultural Science and Technology Innovation project for CAAS (CAAS-ASTIP-2016-ICR) and the Central Level of the Scientific Research Institutes for Basic R & D Special Fund Business (1610162019010101).

Author information

Authors and Affiliations

Authors

Contributions

ZZ, SH and YY conceived the study; ZZ contributed to the data processing and analysis and wrote the manuscript; GJ collected and analyzed the phenotype data; ZZ, GW, LJ and SY managed the RIL population; LA, GQ and PJ collected the phenotype data in Anyang and Shihezi; FS and DX managed and collected the phenotype data in Kuerle and Alaer; LS and CQ helped with manuscript reviewing; SH and YY provided the resources, designed the experiment and revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Youlu Yuan or Haihong Shang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interests.

Ethical standards

We declare that these experiments complied with the ethical standards in China.

Additional information

Communicated by Tianzhen Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Gong, J., Zhang, Z. et al. Identification and analysis of oil candidate genes reveals the molecular basis of cottonseed oil accumulation in Gossypium hirsutum L.. Theor Appl Genet 135, 449–460 (2022). https://doi.org/10.1007/s00122-021-03975-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03975-z

Navigation