Skip to main content
Log in

Nucleotide variation in the phytoene synthase (ClPsy1) gene contributes to golden flesh in watermelon (Citrullus lanatus L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A gene controlling golden flesh trait in watermelon was discovered and fine mapped to a 39.08 Kb region on chromosome 1 through a forward genetic strategy, and Cla97C01G008760 (annotated as phytoene synthase protein, ClPsy1 ) was recognized as the most likely candidate gene.

Abstract

Vitamin A deficiency is a worldwide public nutrition problem, and β-carotene is the precursor for vitamin A synthesis. Watermelon with golden flesh (gf, which occurs due to an accumulated abundance of β-carotene) is an important germplasm resource. In this study, a genetic analysis of segregated gf gene populations indicated that gf was controlled by a single recessive gene. BSA-seq (Bulked segregation analysis) and an initial linkage analysis placed the gf locus in a 290-Kb region on watermelon chromosome 1. Further fine mapping in a large population including over 1000 F2 plants narrowed this region to 39.08 Kb harboring two genes, Cla97C01G008760 and Cla97C01G008770, which encode phytoene synthase (ClPsy1) and GATA zinc finger domain-containing protein, respectively. Gene sequence alignment and expression analysis between parental lines revealed Cla97C01G008760 as the best possible candidate gene for the gf trait. Nonsynonymous SNP mutations in the first exon of ClPsy1 between parental lines co-segregated with the gf trait only among individuals in the genetic population and were not related to flesh color in natural watermelon panels. Promoter sequence analysis of 26 watermelon accessions revealed two SNPs in the cis-acting element sequences corresponding to MYB and MYC2 transcription factors. RNA-seq data and qRT-PCR verification showed that two MYBs exhibited expression trends similar to that of ClPsy1 in the parental lines and may regulate the ClPsy1 expression. Further research findings indicate that the gf trait is determined not only by ClPsy1 but also by ClLCYB, ClCRTISO and ClNCED7, which play important roles in watermelon β-carotene accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data pertinent to the reported work are provided in the manuscript or supplemental online materials.

References

  • Ampomah-Dwamena C, Thrimawithana AH, Dejnoprat S, Lewis D, Espley RV, Allan AC (2019) A kiwifruit (Actinidia deliciosa) R2R3-MYB transcription factor modulates chlorophyll and carotenoid accumulation. New Phytol 221(1):309–325

    CAS  PubMed  Google Scholar 

  • Arce-Rodriguez ML, Martinez O, Ochoa-Alejo N (2021) Genome-wide identification and analysis of the MYB transcription factor gene family in chili pepper (Capsicum spp.). Int J Mol Sci 22(5):2229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai C, Capell T, Berman J, Medina V, Sandmann G, Christou P et al (2016) Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor product balance. Plant Biotech J 14(1):195–205

    CAS  Google Scholar 

  • Bang H, Davis AR, Kim S, Leskovar DI, King S (2010) Flesh color inheritance and gene interactions among canary yellow, pale yellow, and red watermelon. J Am Soc for Hortic Sci 135:362–368

    Google Scholar 

  • Berman J, Zorrilla-López U, Medina V, Farre G, Sandmann G, Capell T et al (2017) The Arabidopsis ORANGE (AtOR) gene promotes carotenoid accumulation in transgenic corn hybrids derived from parental lines with limited carotenoid pools. Plant Cell Rep 36:933–945

    CAS  PubMed  Google Scholar 

  • Branham S, Vexler L, Meir A, Tzuri G, Frieman Z, Levi A et al (2017) Genetic mapping of a major codominant QTL associated with β-carotene accumulation in watermelon. Mol Breed 37:146

    Google Scholar 

  • Bustin SA, Vandesompele J, Pfaffl MW (2009) Standardization of qPCR and RT-qPCR. Genet Eng Biotech N 29(14):40–43

    Google Scholar 

  • Chayut N, Yuan H, Ohali S, Meir A, Sa’ar U, Tzuri G et al (2017) Distinct mechanisms of the orange protein in controlling carotenoid flux. Plant Physiol 173:376–389

    CAS  PubMed  Google Scholar 

  • Dahan-Meir T, Filler-Hayut S, Melamed-Bessudo C, Bocobza S, Czosnek H, Aharoni A et al (2018) Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. Plant J 95(1):5–16

    CAS  PubMed  Google Scholar 

  • Fang XF, Liu S, Gao P, Liu HY, Wang XZ, Luan FS et al (2020) (2020) Expression of ClPAP and ClPsy1 in watermelon correlates with chromoplast differentiation, carotenoid accumulation, and flesh color formation. Sci Hortic 270:109437

    CAS  Google Scholar 

  • Fantini E, Falcone G, Frusciante S, Giliberto L, Giuliano G et al (2013) Dissection of tomato lycopene biosynthesis through virus-induced gene silencing. Plant Physiol 163:986–998

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farre G, Perez-Fons L, Decourcelle M, Breitenbach J, Hem S, Zhu CF et al (2016) Metabolic engineering of astaxanthin biosynthesis in maize endosperm and characterization of a prototype high oil hybrid. Transgenic Res 25:477–489

    CAS  PubMed  Google Scholar 

  • Fu CC, Chen HJ, Gao HY, Lu Y, Han C, Han YC (2020) Two papaya MYB proteins function in fruit ripening by regulating some genes involved in cell-wall degradation and carotenoid biosynthesis. J Sci Food Agr 100(12):4442–4448

    CAS  Google Scholar 

  • Fu XM, Feng C, Wang CY, Yin XR, Lu PJ, Grierson D et al (2014) Involvement of multiple phytoene synthase genes in tissue and cultivar specific accumulation of carotenoids in loquat. J Exp Bot 65:4679–4689

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii S, Kobayashi K, Nagata N, Masuda T, Wada H (2018) Digalactosyldiacylglycerol is essential for organization of the membrane structure in etioplasts. Plant Physiol 177:1487–1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giuliano G (2017) Provitamin a biofortification of crop plants: a gold rush with many miners. Curr Opin Biotech 44:169–180

    CAS  PubMed  Google Scholar 

  • Guo SG, Zhang JG, Sun HH, Salse J, Lucas WJ, Zhang HY et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45(1):51–58

    CAS  PubMed  Google Scholar 

  • Guo SG, Sun HH, Zhang HY, Liu JA, Ren Y, Gong GY et al (2015) Comparative transcriptome analysis of cultivated and wild watermelon during fruit development. PLoS One 10(6):e0130267

    PubMed  PubMed Central  Google Scholar 

  • Guo SG, Zhao SJ, Sun HH, Wang X, Wu S, Lin T et al (2019) Resequencing of 414 cultivated and wild watermelon accessions identifies selection for fruit quality traits. Nat Genet 51(11):1616–1623

    CAS  PubMed  Google Scholar 

  • Hashizume T, Shimamoto I, Hirai M (2003) Construction of a linkage map and QTL analysis of horticultural traits for watermelon [Citrullus lanatus (THUNB.) MATSUM & NAKAI] using RAPD, RFLP and ISSR markers. Theor Appl Genet 106:779–785

    CAS  PubMed  Google Scholar 

  • Henderson W, Scott G, Wehner T (1998) Interaction of flesh color genes in watermelon. J Hered 89:50–53

    Google Scholar 

  • Iorizzo M, Ellison S, Senalik D, Zeng P, Satapoomin P, Huang JY et al (2016) A high-quality carrot genome assembly provides new insights into carotenoid accumulation and asterid genome evolution. Nat Genet 48(6):657–666

    CAS  PubMed  Google Scholar 

  • Jayaraj KL, Thulasidharan N, Antony A, John M, Augustine R, Chakravartty N et al (2021) Targeted editing of tomato carotenoid isomerase reveals the role of 5’ UTR region in gene expression regulation. Plant Cell Rep 40(4):621–635

    Google Scholar 

  • Jeong HB, Kang MY, Jung A, Han K, Lee JH, Jo J et al (2019) Single-molecule real-time sequencing reveals diverse allelic variations in carotenoid biosynthetic genes in pepper (Capsicum spp.). Plant Biotech J 17(6):1081–1793

    CAS  Google Scholar 

  • Jin B, Lee J, Kweon S, Cho Y, Choi Y, Lee SJ et al (2019) Analysis of flesh color-related carotenoids and development of a CRTISO gene-based DNA marker for prolycopene accumulation in watermelon. Hortic Environ Biote 60(3):399–410

    CAS  Google Scholar 

  • Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009a) Searching for SNPs with cloud computing. Genome Biol 10(11):R134

    PubMed  PubMed Central  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009b) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25:1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Li L, Paolillo DJ, Parthasarathy MV, DiMuzio EM, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26:59–67

    CAS  PubMed  Google Scholar 

  • Li L, Yang Y, Xu Q, Owsiany K, Welsch R, Chitchumroonchokchai C et al (2012) The Or gene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers. Mol Plant 5:339–352

    CAS  PubMed  Google Scholar 

  • Li L, Ye J, Li HH, Shi QQ (2020a) Characterization of metabolites and transcripts involved in flower pigmentation in Primula vulgaris. Front Plant Sci 11:572517

    PubMed  PubMed Central  Google Scholar 

  • Li N, Shang J, Wang JM, Zhou D, Li NN, Ma SW et al (2020b) Discovery of the genomic region and candidate genes of the scarlet red flesh color (Yscr) locus in watermelon (Citrullus lanatus L.). Front Plant Sci 11:116

    PubMed  PubMed Central  Google Scholar 

  • Liu S, Gao P, Wang XZ, Davis AR, Baloch A, Luan FS (2015) Mapping of quantitative trait loci for lycopene content and fruit traits in Citrullus lanatus. Euphytica 202:411–426

    CAS  Google Scholar 

  • Lu SW, Zhang Y, Zhu KJ, Yang W, Ye JL, Chai LJ et al (2018) The citrus transcription factor CsMADS6 modulates carotenoid metabolism by directly regulating carotenogenic genes. Plant Physiol 176:2657–2676

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lv P, Li N, Liu H, Gu HH, Zhao WE (2015) Changes in carotenoid profiles and in the expression pattern of the genes in carotenoid metabolisms during fruit development and ripening in four watermelon cultivars. Food Chem 174:52–59

    CAS  PubMed  Google Scholar 

  • Maass D, Arango J, Wust F, Beyer P, Welsch R et al (2009) Carotenoid crystal formation in Arabidopsis and carrot roots caused by increased phytoene synthase protein levels. PLoS One 4(7):e6373

    PubMed  PubMed Central  Google Scholar 

  • Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ (2011) The tomato MADS box transcription factor ripening inhibitor interacts with promoters involved in numerous ripening processes in a colorless nonripening-dependent manner. Plant Physiol 157:1568–1579

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meng YY, Wang ZY, Wang YQ, Wang CN, Zhu BT, Liu H et al (2019) The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula. Plant Cell 31(11):2751–2767

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortimer CL, Misawa N, Ducreux L, Campbell R, Bramley PM, Taylor M et al (2016) Product stability and sequestration mechanisms in Solanum tuberosum engineered to biosynthesize high value ketocarotenoids. Plant Biotech J 14(1):140–152

    CAS  Google Scholar 

  • Park S, Kim HS, Jung YJ, Kim SH, Ji CY, Wang Z et al (2016) Orange protein has a role in phytoene synthase stabilization in sweetpotato. Sci Rep-UK 6:33563

    CAS  Google Scholar 

  • Paul JY, Khanna H, Kleidon J, Hoang P, Geijskes J, Daniells J et al (2017) Golden bananas in the field: elevated fruit pro-vitamin a from the expression of a single banana transgene. Plant Biotechnol J 15(4):520–532

    CAS  PubMed  Google Scholar 

  • Pei S, Liu Z, Wang XZ, Luan FS, Dai ZY, Yang ZZ et al (2021) Quantitative trait loci and candidate genes responsible for pale green flesh color in watermelon (Citrullus lanantus). Plant Breed 140(2):349–359

    CAS  Google Scholar 

  • Peng G, Wang CY, Song S, Fu XM, Azam M, Grierson D et al (2013) The role of 1-deoxy-D-xylulose-5-phosphate synthase and phytoene synthase gene family in citrus carotenoid accumulation. Plant Physiol Biochem 71:67–76

    CAS  PubMed  Google Scholar 

  • Pons E, Aquezar B, Rodriguez A, Martorell P, Genoves S, Ramon D et al (2014) Metabolic engineering of beta-carotene in orange fruit increases its in vivo antioxidant properties. Plant Biotech J 12:17–27

    CAS  Google Scholar 

  • Porter D (1937) Inheritance of certain fruit and seed characters in watermelons. Hilgardia 10:489–509

    Google Scholar 

  • Rodriguez-Concepcion M, Avalos J, Bonet M (2018) A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog Lipid Res 70:62–93

    CAS  PubMed  Google Scholar 

  • Shumskaya M, Bradbury LMT, Monaco RR, Wurtzel ET (2012) Plastid localization of the key carotenoid enzyme phytoene synthase is altered by isozyme, allelic variation, and activity. Plant Cell 24:3725–3741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun TH, Yuan H, Cao HB, Yazdani M, Tadmor Y, Li L (2018) Carotenoid metabolism in plants: the role of plastids. Mol Plant 11:58–74

    PubMed  Google Scholar 

  • Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32(1):e5

    PubMed  PubMed Central  Google Scholar 

  • Tzuri G, Zhou XJ, Chayut N, Yuan H, Portnoy V, Meir A et al (2015) A ‘golden’ SNP in CmOr governs the fruit flesh color of melon (Cucumis melo). Plant J 82:267–279

    CAS  PubMed  Google Scholar 

  • Wang C, Zeng J, Li Y, Hu W, Chen L, Miao YJ et al (2014) Enrichment of provitamin a content in wheat (Triticum aestivum L.) by introduction of the bacterial carotenoid biosynthetic genes CrtB and CrtI. J Exp Bot 65(9):2545–2556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CN, Luan FS, Liu HY, Davis AR, Zhang QA, Dai ZY et al (2021) Mapping and predicting a candidate gene for flesh color in watermelon. J Integr Agr. https://doi.org/10.1016/S2095-3119(20)63487-6

    Article  Google Scholar 

  • Wang CN, Qiao AH, Fang XF, Sun L, Gao P, Angela AR et al (2019) Fine mapping of lycopene content and flesh color related gene and development of molecular marker-assisted selection for flesh color in watermelon (Citrullus lanantus). Front Plant Sci 10:1240

    PubMed  PubMed Central  Google Scholar 

  • Wang N, Liu S, Gao P, Luan FS, Davis AR (2016) Developmental changes in gene expression drive accumulation of lycopene and beta-carotene in watermelon. J Am Soc Horti Sci 141:1–10

    Google Scholar 

  • Watkins JL, Pogson BJ (2020) Prospects for carotenoid biofortification targeting retention and catabolism. Trends in Plant Sci 25(5):501–512

    CAS  Google Scholar 

  • Wehner T (2007) Gene list for watermelon. Cucurbit Genet Coop Rep 30:9–120

    Google Scholar 

  • Welsch R, Arango J, Bar C, Salazar B, Al-Babili S, Beltran J et al (2010) Provitamin a accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356

    CAS  PubMed  PubMed Central  Google Scholar 

  • Welsch R, Zhou XJ, Yuan H, Alvarez D, Sun T, Schlossarek D et al (2018) Clp protease and OR directly control the proteostasis of phytoene synthase, the crucial enzyme for carotenoid biosynthesis in Arabidopsis. Mol Plant 11:149–162

    CAS  PubMed  Google Scholar 

  • Wu MB, Xu X, Hu XW, Liu YD, Cao HH, Chan HE et al (2020) SlMYB72 regulates the metabolism of chlorophylls, carotenoids, and flavonoids in tomato fruit. New Phytol 183(3):854–868

    CAS  Google Scholar 

  • Xiong C, Luo D, Lin AH, Zhang CL, Shan LB, He P et al (2019) A tomato B-box protein SlBBX20 modulates carotenoid biosynthesis by directly activating phytoene synthase 1, and is targeted for 26S proteasome-mediated degradation. New Phytol 221(1):279–294

    CAS  PubMed  Google Scholar 

  • Xu XC, Fang PP, Zhang H, Chi C, Song LX, Xia XJ et al (2019) Strigolactones positively regulate defense against root-knot nematodes in tomato. J Exp Bot 70(4):1325–1337

    CAS  PubMed  Google Scholar 

  • Yuan H, Zhang JX, Nageswaran D, Li L (2015) Carotenoid metabolism and regulation in horticultural crops. Hortic Res 2:15036

    PubMed  PubMed Central  Google Scholar 

  • Zeng J, Wang XT, Miao YJ, Wang C, Zang ML, Chen X et al (2015) Metabolic engineering of wheat provitamin a by simultaneously overexpressing CrtB and silencing carotenoid hydroxylase (TaHyd). J Agr Food Chem 63:9083–9092

    CAS  Google Scholar 

  • Zhai SN, Li GY, Sun YW, Song JM, Li JH, Song GQ et al (2016) Genetic analysis of phytoene synthase 1 (Psy1) gene function and regulation in common wheat. BMC Plant Biol 16:228

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Guo SG, Ren Y, Zhang HY, Gong GY, Zhou M et al (2017) High-level expression of a novel chromoplast phosphate transporter ClPHT4;2 is required for flesh color development in watermelon. New Phytol 213:1208–1221

    CAS  PubMed  Google Scholar 

  • Zhang J, Sun HH, Guo SG, Ren Y, Li MY, Wang JF et al (2020) Decreased protein abundance of lycopene β-cyclase contributes to red flesh in domesticated watermelon. Plant Physiol 183(3):1171–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong S, Joung JG, Zheng Y, Chen YR, Liu B, Shao Y et al (2011) High-throughput illumine strand-specific RNA sequencing library preparation. Cold Spring Harb Protocols 8:pdb-prot5652

    Google Scholar 

  • Zhou XJ, Welsch R, Yang Y, Alvarez D, Riediger M, Yuan H et al (2015) Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis. P Natl Acad Sci USA112:3558–3563

    Google Scholar 

  • Zhu F, Luo T, Liu CY, Wang Y, Yang HB, Yang W et al (2017) An R2R3-MYB transcription factor represses the transformation of alpha- and beta-branch carotenoids by negatively regulating expression of CrBCH2 and CrNCED5 in flavedo of Citrus reticulate. New Phytol 216(1):178–192

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province [Grant# UNPYSCT-201816]; the China Agriculture Research System [Grant No. CARS-25].

Author information

Authors and Affiliations

Authors

Contributions

SL designed the experiment, analyzed the data and wrote the manuscript. ZG performed the major experiments, with the help of SL. XW and FL revised the manuscript. ZD, ZY, and QZ provided some of the materials used in this study and participated in phenotypic data collection. SL and ZG contributed equally to this work. XW and SL are the co-corresponding authors.

Corresponding authors

Correspondence to Shi Liu or Xuezheng Wang.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Communicated by Amnon Levi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Gao, Z., Wang, X. et al. Nucleotide variation in the phytoene synthase (ClPsy1) gene contributes to golden flesh in watermelon (Citrullus lanatus L.). Theor Appl Genet 135, 185–200 (2022). https://doi.org/10.1007/s00122-021-03958-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03958-0

Navigation