Skip to main content
Log in

Fine-mapping and candidate gene analysis for the foxglove aphid resistance gene Raso2 from wild soybean PI 366121

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The foxglove aphid resistance gene Raso2 from PI 366121 was fine-mapped to 77 Kb region, and one candidate gene was identified.

Abstract

The foxglove aphid (FA: Aulacorthum solani Kaltenbach) is an important insect pest that causes serious yield losses in soybean. The FA resistance gene Raso2 from wild soybean PI 366121 was previously mapped to a 13 cM interval on soybean chromosome 7. However, fine-mapping of Raso2 was needed to improve the effectiveness of marker-assisted selection (MAS) and to eventually clone it. The objectives of this study were to fine-map Raso2 from PI 366121 using Axiom® 180 K SoyaSNP array, to confirm the resistance and inheritance of Raso2 in a different background, and to identify candidate gene(s). The 105 F4:8 recombinant inbred lines were used to fine-map the gene and to test antibiosis and antixenosis of Raso2 to FA. These efforts resulted in the mapping of Raso2 on 1 cM interval which corresponds to 77 Kb containing eight annotated genes based on the Williams 82 reference genome assembly (Wm82.a2.v1). Interestingly, all nonsynonymous substitutions were in Glyma.07g077700 which encodes the disease resistance protein containing LRR domain and expression of the gene in PI 366121 was significantly higher than that in Williams 82. In addition, distinct SNPs within Glyma.07g077700 that can distinguish PI 366121 and diverse FA-susceptible soybeans were identified. We also confirmed that Raso2 presented the resistance to FA and the Mendelian inheritance for single dominant gene in a different background. The results of this study would provide fundamental information on MAS for development of FA-resistant cultivars as well as functional study and cloning of the candidate gene in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bernard RL, Cremeens CR (1988) registration of Williams 82 soybean. Crop Sci 28:1027–1028

    Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the world’s crops: an identification and information guide, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Dogimont C, Bendahmane A, Pitrat M, Burget-Bigeard E, Hagen L, Le Menn A, Pauquet J, Rousselle P, Caboche M, Chovelon V (2009) Gene resistant to Aphis gossypii. US Patent 7,576,264, 18 Aug 2009

  • Fehr WR, Caviness CE, Burmood DT, Pennington JS (1971) Stage of development description for soybean, Glycine max (L.) Merrill. Crop Sci 11:929–931

    Article  Google Scholar 

  • Harrewijn P, Minks AK (1989) Integrated aphid management: general aspecrs. In: Minks AK, Harrewijn P (eds) Aphids: their biology, natural enemies, and control, vol 2C. Elsevier, Amsterdam, pp 267–272

    Google Scholar 

  • Jandricic SE, Wraight SP, Bennett KC, Sanderson JP (2010) Developmental times and life table statistics of Aulacorthum solani (Hemiptera: Aphididae) at six constant temperatures, with recommendations on the application of temperature-dependent development models. Environ Entomol 39:1631–1642

    Article  CAS  PubMed  Google Scholar 

  • Ji W, Zhu Y, Li Y, Yang L, Zhao X, Cai H, Bai X (2010) Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotech Lett 32(8):1173–1179

    Article  CAS  Google Scholar 

  • Jun TH, Van K, Kim MY, Lee SH, Walker DR (2008) Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162(2):179–191

    Article  CAS  Google Scholar 

  • Kamphuis LG, Guo S-M, Gao L-L, Singh KB (2016) Genetic mapping of a major resistance gene to pea aphid (Acyrthosipon pisum) in the model legume Medicago truncatula. Int J Mol Sci 17(8):1224

    Article  PubMed Central  CAS  Google Scholar 

  • Kao WY, Tsai TT, Tsai HC, Shih CN (2006) Response of three Glycine species to salt stress. Environ Exp Bot 56(1):120–125

    Article  CAS  Google Scholar 

  • Kim DH, Lee GH, Park JH, Hwang CY (1991) Occurrence aspects and ecological characteristics of foxglove aphid, Aulacorthum solani, Kaltenbach (Homoptera: Aphididae) in soybean. Res Rept RDA 33:28–32

    Google Scholar 

  • Kim KS, Bellendir S, Hudson KA, Hill CB, Hartman GL, Hyten DL, Hudson MW, Diers BW (2010a) fine mapping the soybean aphid resistance gene Rag1 in soybean. Theor Appl Genet 120:1063–1071

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Hill CB, Hartman GL, Hyten DL, Hudson ME, Diers BW (2010b) Fine mapping of the soybean aphid–resistance gene Rag2 in soybean PI 200538. Theor Appl Genet 121:599–610

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Chirumamilla A, Hill CB, Hartman GL, Diers BW (2014) Identification and molecular mapping of two soybean aphid resistance genes in soybean PI 587732. Theor Appl Genet 127:1251–1259

    Article  CAS  PubMed  Google Scholar 

  • Kim KS, Hill CB, Hartman GL, Mian MAR, Diers BW (2008) Discovery of soybean aphid biotypes. Crop Sci 48:923–928

    Article  Google Scholar 

  • Kim MS, Lozano R, Kim JH, Bae DN, Kim ST, Park JH, Choi MS, Kim J, Ok HV, Park SK, Gore MA, Moon JK, Jeong SC (2021) The patterns of deleterious mutations during the domestication of soybean. Nat Commun 12:97. https://doi.org/10.1038/s41467-020-20337-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klingler J, Creasy R, Gao LL, Nair RM, Calix AS, Jacob HS, Edwards OR, Singh KB (2005) Aphid resistance in Medicago truncatula involves antixenosis and phloem-specific, inducible antibiosis, and maps to a single locus flanked by NBS-LRR resistance gene analogs. Plant Physiol 137:1445–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogan M, Ortman EE (1978) Antixenosis: A new twrm proposed to define Painter’s “nonpreference” modality of resistance. Bull Entomol Soc Am 24:175–176

    Google Scholar 

  • Koh HM, Park S et al (2018) Resistance sources for the foxglove aphid in soybean. J Crop Sci 63(3):257–264

    Google Scholar 

  • Komatsu K, Okuda S, Takahashi M, Matsunaga R, Nakazawa Y (2005) QTL mapping of antibiosis resistance to common cutworm (Spodoptera litura Fabricius) in Soybean. Crop Sci 45(5):2044–2048

    Article  CAS  Google Scholar 

  • Leather SR (1992) Aspects of aphid overwintering (Homoptera: Aphidinea: Aphididae). Entomol Gen 17:101–113

    Article  Google Scholar 

  • Lee JS, Yoo MH, Jung JK, Bilyeu KD, Lee JD, Kang ST (2015a) Detection of novel QTLs for foxglove aphid resistance in soybean. Theor Appl Genet 128:1481–1488

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Holman J, Havelka J (2002) illustrated catalogue of aphididae in the Korean Peninsula. Part I. Subfamily Aphidinae (Hemiptera: Sternorrhyncha); KRIBB & CIS: Chuncheon, Korea, pp 106–108

  • Lee YG, Jeong N, Kim JH, Lee K, Kim KH, Pirani A et al (2015b) Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J 81:625–636

    Article  CAS  PubMed  Google Scholar 

  • Libault M, Thibivilliers S, Bilgin DD, Radwan O, Benitez M, Clough SJ, Stacey G (2008) Identification of four soybean reference genes for gene expression normalization. Plant Genome 1:44–54

    Article  CAS  Google Scholar 

  • Li MW, Xin D, Gao Y, Li KP, Fan K, Muñoz NB et al (2017) Using genomic information to improve soybean adaptability to climate change. J Exp Bot 68(8):1823–1834

    CAS  PubMed  Google Scholar 

  • Li H, Ribaut JM, Li Z, Wang J (2008) Inclusive composite interval mapping (ICIM) for digenic epistasis of quantitative traits in biparental population. Theor Appl Genet 116:243–260

    Article  PubMed  Google Scholar 

  • Li Y, Hill CB, Carlson S, Diers BW, Hartman GL (2007) Soybean aphid resistance genes in the soybean cultivars Dowling and Jackson map to linkage group M. Mol Breeding 19:25–34

    Article  CAS  Google Scholar 

  • Nagano T, Umetsu Y, Hoshi N, Kidokoro T (2001) Outbreak of the foxglove aphid, Aulacorthum solani (Kaltenbach), in soybean fields of Miyagi Prefecture. II. Effect on soybean yield. Annual Report of the Society of Plant Protection of North Japan 52:168–171

    Google Scholar 

  • Narvel JM, Walker DR, Rector BG, All JN, Parrott WA, Boerma HR (2001) A retrospective DNA marker assessment of the development of insect resistant Soybean. Crop Sci 41(6):1931–1939

    Article  CAS  Google Scholar 

  • Oki N, Komatsu K, Sayama T, Ishimoto M, Takahashi M, Takahashi M (2012) Genetic analysis of antixenosis resistance to the common cutworm (Spodoptera litura Fabricius) and its relationship with pubescence characteristics in soybean (Glycine max (L.) Merr.). Breed Sci 61(5):608–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliarani G, Dapena E, Miñarro M et al (2016) Fine mapping of the rosy apple aphid resistance Dp-fl locus on Linkage Group 8 of the apple cultivar ‘Florina.’ Tree Genet Genom 12:56

    Article  Google Scholar 

  • Painter RH (1951) Insect resistance in crop plants. Macmillan, New York

    Book  Google Scholar 

  • Park KY, Yun HT, Moon JK, Ku JH, Hwang JJ, Lee SH, Seung YK, Ryu YH, Chung WK, Lee YH, Kin SD, Chung MN (2000) A new soybean cultivar for sprout with good storability and disease resistance, ‘Sowonkong.’ Korean J Breed 32(3):298–299

    Google Scholar 

  • Pham AT, Lee JD, Shannon JG, Bilyeu KD (2010) Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol 10(1):195

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  • Rector BG, All JN, Parrott WA, Boerma HR (2000) Quantitative trait loci for antibiosis resistance to corn earworm in soybean. Crop Sci 40(1):233–238

    Article  Google Scholar 

  • Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smalley MD, Fehr WR, Cianzio SR, Han F, Sebastian SA, Streit LG (2004) Quantitative trait loci for soybean seed yield in elite and plant introduction germplasm. Crop Sci 44:436–442

    Article  CAS  Google Scholar 

  • Sun M, Voorrips RE, van’t Westende W, et al (2020) Aphid resistance in Capsicum maps to a locus containing LRR-RLK gene analogues. Theor Appl Genet 133:227–237

    Article  CAS  PubMed  Google Scholar 

  • Takken FLW, Albrecht M, Tameling WIL (2006) Resistance proteins: molecular switches of plant defense. Curr Opin Plant Biol 9:383–390

    Article  CAS  PubMed  Google Scholar 

  • Turl LAD (1983) The effect of winter weather on the survival of aphid populations on weeds in Scotland. EPPO Bull 13:139–143

    Article  Google Scholar 

  • Zhang G, Gu C, Wang D (2009) Molecular mapping of soybean aphid resistance genes in PI 567541B. Theor Appl Gen 118(3):473–482

    Article  CAS  Google Scholar 

  • Zhang J, Yang D, Li M, Shi L (2016) Metabolic profiles reveal changes in wild and cultivated soybean seedling leaves under salt stress. PLoS ONE 11(7):e059622

    Google Scholar 

  • Zhang S, Zhang Z, Bales C et al (2017a) Mapping novel aphid resistance QTL from wild soybean, Glycine soja 85–32. Theor Appl Genet 130:1941–1952

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zhang Z, Wen Z et al (2017b) Fine mapping of the soybean aphid-resistance genes Rag6 and Rag3c from Glycine soja 85–32. Theor Appl Genet 130:2601–2615

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Next-Generation BioGreen 21 Program (No. PJ01319201), Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

KSK and JMK contributed equally to this research. KSK outlined, wrote the first draft of the manuscript, revised, and finalized the manuscript; JMK performed evaluation of FA resistance, analyzed the data, and wrote M&M, figures, and tables in the first manuscript; JJ, IS, and SP performed experiments; SCJ and JSL analyzed the genotypic data; JDL provided the second soybean population; JKJ provided the Foxglove aphid; BKH performed the gene expression study; and SK acquired funding and supervised the study and finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sungtaeg Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Evans Lagudah.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KS., Kim, JM., Jung, J. et al. Fine-mapping and candidate gene analysis for the foxglove aphid resistance gene Raso2 from wild soybean PI 366121. Theor Appl Genet 134, 2687–2698 (2021). https://doi.org/10.1007/s00122-021-03853-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03853-8

Navigation