Skip to main content
Log in

Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We detected a QTL qHSW-16 undergone strong selection associated with seed weight and identified a novel candidate gene controlling seed weight candidate gene for this major QTL by qRT-PCT.

Abstract

Soybean [Glycine max (L.) Merr.] provides more than half of the world’s oilseed production. To expand its germplasm resources useful for breeding increased yield and oil quality cultivars, it is necessary to resolve the diversity and evolutionary history of this crop. In this work, we resequenced 283 soybean accessions from China and obtained a large number of high-quality SNPs for investigation of the population genetics that underpin variation in seed weight and other agronomic traits. Selective signature analysis detected 78 (~ 25.0 Mb) and 39 (~ 22.60 Mb) novel putative selective signals that were selected during soybean domestication and improvement, respectively. Genome-wide association study (GWAS) identified five loci associated with seed weight. Among these QTLs, qHSW-16, overlapped with the improvement-selective region on chromosome 16, suggesting that this QTL may be underwent strong selection during soybean improvement. Of the 18 candidate genes in qHSW-16, only SoyZH13_16G122400 showed higher expression levels in a large seed variety compared to a small seed variety during seed development. These results identify SoyZH13_16G122400 as a novel candidate gene controlling seed weight and provide foundational insights into the molecular targets for breeding improvement of seed weight and potential seed yield in soybean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig.4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Caverzan A, Giacomin R, Müller M, Biazus C, Lângaro NC, Chavarria G (2018) How does seed vigor affect soybean yield components? Agron J 110:1318–1327

    Article  CAS  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Mol Plant 13:1194–1202

    Article  CAS  PubMed  Google Scholar 

  • Chi Z, Shan-Shan D, Jun-Yang X, Wei-Ming H, Tie-Lin Y (2019) PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 10:1786–1788

    Google Scholar 

  • Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dashiell K (2005) SOYBEANS: improvement, production, and uses. Third Edition: Boerma, H.R., Specht, J.E. (Eds), American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, Wisconsin, USA, 2004, 1144 pp. Price: US$155.00 (hardback). ISBN 0-89118-154-7. Agric Syst 83:110–111

    Google Scholar 

  • Eloy NB, de Freitas Lima M, Van Damme D, Vanhaeren H, Gonzalez N, De Milde L, Hemerly AS, Beemster GT, Inzé D, Ferreira PC (2011) The APC/C subunit 10 plays an essential role in cell proliferation during leaf development. Plant J 68:351–363

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Li D, Zhu D, Li H, Li X, Teng W, Li W (2012) QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet 125:671–683

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Zhang D, Zhang G, Kan G, Hong D, Yu D (2014) Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb. and Zucc.). Breeding Sci 63:441–449

    Article  CAS  Google Scholar 

  • Hu D, Zhang H, Du Q, Hu Z, Yang Z, Li X, Wang J, Huang F, Yu D, Wang H, Kan G (2020) Genetic dissection of yield-related traits via genome-wide association analysis across multiple environments in wild soybean (Glycine soja Sieb. and Zucc.). Planta 251:39

    Article  CAS  PubMed  Google Scholar 

  • Hwang EY, Song Q, Jia G et al (2014) A genome-wide association study of seed protein and oil content in soybean[J]. BMC Genom 15(1):1–12

  • Kato S, Sayama T, Fujii K, Yumoto S, Kono Y, Hwang T, Kikuchi A, Takada Y, Tanaka Y, Shiraiwa T, Ishimoto M (2014) A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet 127:1365–1374

    Article  CAS  PubMed  Google Scholar 

  • Lam H, Xu X, Liu X, Chen W, Yang G, Wong F, Li M, He W, Qin N, Wang B, Li J, Jian M, Wang J, Shao G, Wang J, Sun SS, Zhang G (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Lee G, Crawford GW, Liu L, Sasaki Y, Chen X (2011) Archaeological soybean (Glycine max) in East Asia: does size matter? PLoS ONE 6:e26720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee T, Guo H, Wang X, Kim C, Paterson AH (2014) SNPhylo: a pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15:162

    Article  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2019) Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Zheng D (2008) QTL mapping for major agronomic traits across 2 years in soybean. J Crop Sci Biotechnol 11(3):171–190

    Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome PDPS (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li YH, Li D, Jiao YQ, Schnable JC, Li YF, Li HH, Chen HZ, Hong HL, Zhang T, Liu B (2020) Identification of loci controlling adaptation in Chinese soya bean landraces via a combination of conventional and bioclimatic GWAS. Plant Biotechnol J 18:389–401

    Article  CAS  PubMed  Google Scholar 

  • Liang H, Xu L, Yu Y, Yang H, Dong W, Zhang H (2016) Identification of QTLs with main, epistatic and QTL by environment interaction effects for seed shape and hundred-seed weight in soybean across multiple years. J Genet 95:475–477

    Article  PubMed  Google Scholar 

  • Lima MDF, Eloy NB, Bottino MC, Hemerly AS, Ferreira PCG (2013) Overexpression of the anaphase-promoting complex (APC) genes in Nicotiana tabacum promotes increasing biomass accumulation. Mol Biol Rep 40:7093–7102

    Article  Google Scholar 

  • Lin Q, Wang D, Dong H, Gu S, Cheng Z, Gong J, Qin R, Jiang L, Li G, Wang JL, Wu F, Guo X, Zhang X, Lei C, Wang H, Wan J (2012) Rice APC/C-TE controls tillering by mediating the degradation of MONOCULM 1. Nat Commun 3:752

    Article  PubMed  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ, Gore MA, Buckler ES, Zhang Z (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28:2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Dong L, Fang C, Liu S, Kong L, Cheng Q, Chen L, Su T, Nan H, Zhang D, Zhang L, Wang Z, Yang Y, Yu D, Liu X, Yang Q, Lin X, Tang Y, Zhao X, Yang X, Tian C, Xie Q, Li X, Yuan X, Tian Z, Liu B, Weller JL, Kong F (2020) Stepwise selection on homeologous PRR genes controlling flowering and maturity during soybean domestication. Nat Genet 52:428–436

    Article  CAS  PubMed  Google Scholar 

  • Maughan PJ, Maroof MAS, Buss GR (1996) Molecular-marker analysis of seed-weight: genomic locations, gene action, and evidence for orthologous evolution among three legume species. Theor Appl Genet 93:574–579

    Article  CAS  PubMed  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mian MAR, Bailey MA, Tamulonis JP, Shipe ER, Carter TE, Parrott WA, Ashley DA, Hussey RS, Boerma HR (1996) Molecular markers associated with seed weight in two soybean populations. Theor Appl Genet 93:1011–1016

    Article  CAS  PubMed  Google Scholar 

  • Miao L, Yang S, Zhang K, He J, Wu C, Ren Y, Gai J, Li Y (2020) Natural variation and selection in GmSWEET39 affect soybean seed oil content. New Phytol 225:1651–1666

    Article  CAS  PubMed  Google Scholar 

  • Nielsen R, Williamson S, Kim Y, Hubisz MJ, Clark AG, Bustamante C (2005) Genomic scans for selective sweeps using SNP data. Genome Res 15:1566–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11:122–127

    Article  CAS  Google Scholar 

  • Penfield S (2017) Seed dormancy and germination. Curr Biol 27:R874–R878

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Li M, Xie M, Liu X, Ni M, Shao G, Song C, Kay-Yuen Yim A, Tao Y, Wong F, Isobe S, Wong C, Wong K, Xu C, Li C, Wang Y, Guan R, Sun F, Fan G, Xiao Z, Zhou F, Phang T, Liu X, Tong S, Chan T, Yiu S, Tabata S, Wang J, Xu X, Lam H (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun 5:4340

    Article  CAS  PubMed  Google Scholar 

  • Rajjou L, Duval M, Gallardo K, Catusse J, Bally J, Job C, Job D (2012) Seed germination and vigor. Annu Rev Plant Biol 63:507–533

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Liu J, Geng H, Zhang J, Liu Y, Zhang H, Xing S, Du J, Ma S, Tian Z (2018) De novo assembly of a Chinese soybean genome. Sci China Life Sci 61:871–884

    Article  CAS  PubMed  Google Scholar 

  • Shin J, Blay S, McNeney B, Graham J (2006) LDheatmap: an R function for graphical display of pairwise linkage disequilibria between single. J Stat Softw 16:1–10

    Article  Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water: a QTL analysis of drought tolerance. Crop Sci 41:493–509

    Article  CAS  Google Scholar 

  • Tengfei Z, Tingting W, Liwei W, Bingjun J, Caixin Z, Shan Y, Wensheng H, Cunxiang W, Tianfu H, Shi S (2019) A Combined linkage and GWAS analysis identifies QTLs linked to soybean seed protein and oil content. Int J Mol Sci 20:5915

    Article  Google Scholar 

  • Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang M, Li W, Fang C, Xu F, Liu Y, Wang Z, Yang R, Zhang M, Liu S, Lu S, Lin T, Tang J, Wang Y, Wang H, Lin H, Zhu B, Chen M, Kong F, Liu B, Zeng D, Jackson SA, Chu C, Tian Z (2018) Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat Genet 50:1435

    Article  CAS  PubMed  Google Scholar 

  • Wu D, Zhan Y, Sun Q, Xu L, Lian M, Zhao X, Han Y, Li W (2018) Identification of quantitative trait loci underlying soybean (Glycine max [L.] Merr.) seed weight including main, epistatic and QTL × environment effects in different regions of Northeast China. Plant Breeding 137:194–202

    Article  CAS  Google Scholar 

  • Xu C, Wang Y, Yu Y, Duan J, Liao Z, Xiong G, Meng X, Liu G, Qian Q, Li J (2012) Degradation of MONOCULM 1 by APC/CTAD1 regulates rice tillering. Nat Commun 3:750

    Article  PubMed  Google Scholar 

  • Xu R, Xu J, Wang L, Niu B, Copenhaver GP, Ma H, Zheng B, Wang Y (2019) The Arabidopsis anaphase-promoting complex/cyclosome subunit 8 is required for male meiosis. New Phytol 224:229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zabala G, Vodkin LO (2007) A rearrangement resulting in small tandem repeats in the F3′5′H gene of white flower genotypes is associated with the Soybean W1 Locus. CROP SCI 47:113–124

    Article  Google Scholar 

  • Zhang W, Liao X, Cui Y, Ma W, Zhang X, Du H, Ma Y, Ning L, Wang H, Huang F, Yang H, Kan G, Yu D (2019) A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean. PLoS Genet 15:e1007798

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng B, Chen X, McCormick S (2011) Zheng B, Chen X, McCormick S. The anaphase-promoting complex is a dual integrator that regulates both MicroRNA-mediated transcriptional regulation of cyclin B1 and degradation of Cyclin B1 during Arabidopsis male gametophyte development. Plant Cell 23:1033–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Jiang Y, Wang Z, Gou Z, Lyu J, Li W, Yu Y, Shu L, Zhao Y, Ma Y, Fang C, Shen Y, Liu T, Li C, Li Q, Wu M, Wang M, Wu Y, Dong Y, Wan W, Wang X, Ding Z, Gao Y, Xiang H, Zhu B, Lee S, Wang W, Tian Z (2015) Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33:125–408

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFE0112200), the Key R&D project of Jiangsu Province (BE2019376).

Author information

Authors and Affiliations

Authors

Contributions

ZW, WX, HZ, and SL contributed to field design and phenotypic data collection; ZW and XC performed phenotypic analysis; WX, LS, XL, YZ, and CX assisted in revising the manuscript; ZW analyzed the experimental results; ZW and HT wrote the manuscript. All authors reviewed the manuscript and provided suggestions.

Corresponding authors

Correspondence to Xin Chen or Huatao Chen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Availability of data and materials

Data provided in supplementary files.

Additional information

Communicated by Istvan Rajcan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 957 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Xu, W., Zhang, H. et al. Comparative selective signature analysis and high-resolution GWAS reveal a new candidate gene controlling seed weight in soybean. Theor Appl Genet 134, 1329–1341 (2021). https://doi.org/10.1007/s00122-021-03774-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03774-6

Navigation