Skip to main content
Log in

Extension of a haplotype-based genomic prediction model to manage multi-environment wheat data using environmental covariates

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A multi-environment genomic prediction model incorporating environmental covariates increased the prediction accuracy of wheat grain protein content. The advantage of the haplotype-based model was dependent upon the trait of interest.

Abstract

The inclusion of environment covariates (EC) in genomic prediction models has the potential to precisely model environmental effects and genotype-by-environment interactions. Together with EC, a haplotype-based genomic prediction approach, which is capable of accommodating the interaction between local epistasis and environment, may increase the prediction accuracy. The main objectives of our study were to evaluate the potential of EC to portray the relationship between environments and the relevance of local epistasis modelled by haplotype-based approaches in multi-environment prediction. The results showed that among five traits: grain yield (GY), plant height, protein content, screenings percentage (SP) and thousand kernel weight, protein content exhibited a 2.1% increase in prediction accuracy when EC was used to model the environmental relationship compared to treatment of the environment as a regular random effect without a variance–covariance structure. The approach used a Gaussian kernel to characterise the relationship among environments that displayed no advantage in contrast to the use of a genomic relationship matrix. The prediction accuracies of haplotype-based approaches for SP were consistently higher than the genotype-based model when the numbers of single-nucleotide polymorphisms (SNP) in a haplotype were from three to ten. In contrast, for GY, haplotype-based models outperformed genotype-based methods when two to four SNPs were used to construct the haplotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akdemir D, Jannink J-L (2015) Locally epistatic genomic relationship matrices for genomic association and prediction. Genetics 199:857–871

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker C, Sterling M, Berry P (2014) A generalised model of crop lodging. J Theor Biol 363:1–12

    Article  CAS  PubMed  Google Scholar 

  • Baligar V, Fageria N, He Z (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950

    Article  CAS  Google Scholar 

  • Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36

    Article  CAS  PubMed  Google Scholar 

  • Belamkar V, Guttieri MJ, Hussain W, Jarquín D, El-basyoni I, Poland J, Lorenz AJ, Baenziger PS (2018) Genomic selection in preliminary yield trials in a winter wheat breeding program. G3 Genes Genomes Genet 8:2735–2747

    Google Scholar 

  • Bentley AR, Scutari M, Gosman N, Faure S, Bedford F, Howell P, Cockram J, Rose GA, Barber T, Irigoyen J (2014) Applying association mapping and genomic selection to the dissection of key traits in elite European wheat. Theor Appl Genet 127:2619–2633

    Article  CAS  PubMed  Google Scholar 

  • Burgueño J, de los Campos G, Weigel K, Crossa J (2012) Genomic prediction of breeding values when modeling genotype × environment interaction using pedigree and dense molecular markers. Crop Sci 52:707–719

    Article  Google Scholar 

  • Cooper M, DeLacy I (1994) Relationships among analytical methods used to study genotypic variation and genotype-by-environment interaction in plant breeding multi-environment experiments. Theor Appl Genet 88:561–572

    Article  CAS  PubMed  Google Scholar 

  • Cooper M, Woodruff D, Eisemann R, Brennan P, DeLacy I (1995) A selection strategy to accommodate genotype-by-environment interaction for grain yield of wheat: managed-environments for selection among genotypes. Theor Appl Genet 90:492–502

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, González-Camacho JM, Pérez-Elizalde S, Beyene Y (2017) Genomic selection in plant reeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    Article  CAS  PubMed  Google Scholar 

  • Cuevas J, Crossa J, Montesinos-López OA, Burgueño J, Pérez-Rodríguez P, de los Campos G (2016a) Bayesian genomic prediction with genotype × environment interaction kernel models. G3 Genes Genomes Genet 7:41–53

    Google Scholar 

  • Cuevas J, Crossa J, Soberanis V, Pérez-Elizalde S, Pérez-Rodríguez P, de los Campos G, Montesinos-López OA, Burgueño J (2016b) Genomic prediction of genotype × environment interaction kernel regression models. Plant Genome 9:1–20

    Article  Google Scholar 

  • Cuevas J, Granato I, Fritsche-Neto R, Montesinos-Lopez OA, Burgueño J, Sousa MBE, Crossa J (2018) Genomic-enabled prediction kernel models with random intercepts for multi-environment trials. G3 Genes Genomes Genet 8:1347–1365

    Google Scholar 

  • Cullis BR, Smith AB, Coombes NE (2006) On the design of early generation variety trials with correlated data. J Agric Biol Environ Stat 11:381

    Article  Google Scholar 

  • de los Campos G, Gianola D, Rosa GJM, Weigel KA, Crossa J (2010) Semi-parametric genomic-enabled prediction of genetic values using reproducing kernel Hilbert spaces methods. Genet Res 92:295–308

    Article  CAS  Google Scholar 

  • Dubitzky W, Granzow M, Berrar DP (2007) Fundamentals of data mining in genomics and proteomics. Springer, Berlin

    Book  Google Scholar 

  • Endelman JB, Atlin GN, Beyene Y, Semagn K, Zhang X, Sorrells ME, Jannink J-L (2014) Optimal design of preliminary yield trials with genome-wide markers. Crop Sci 54:48–59

    Article  Google Scholar 

  • Falconer D, Mackay T (1996) Introduction to quantitative genetics. Addison Wesley Longman, Harlow

    Google Scholar 

  • Gianola D, van Kaam JB (2008) Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. Genetics 178:2289–2303

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilmour A, Gogel B, Cullis B, Thompson R (2009) ASReml User Guide Release 3.0. VSN International Ltd, Hemel Hempstead, HP1 1ES, United Kingdom

  • Green C (1987) Nitrogen nutrition and wheat growth in relation to absorbed solar radiation. Agric For Meteorol 41:207–248

    Article  Google Scholar 

  • He S, Schulthess AW, Mirdita V, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2016) Genomic selection in a commercial winter wheat population. Theor Appl Genet 129:641–651

    Article  CAS  PubMed  Google Scholar 

  • He S, Reif JC, Korzun V, Bothe R, Ebmeyer E, Jiang Y (2017) Genome-wide mapping and prediction suggests presence of local epistasis in a vast elite winter wheat populations adapted to Central Europe. Theor Appl Genet 130:635–647

    Article  CAS  PubMed  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink J-L, Sorrells ME (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50:1681–1690

    Article  Google Scholar 

  • Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Briefings in functional genomics 9:166–177

    Article  CAS  PubMed  Google Scholar 

  • Jarquín D, Crossa J, Lacaze X, Du Cheyron P, Daucourt J, Lorgeou J, Piraux F, Guerreiro L, Pérez P, Calus M (2014) A reaction norm model for genomic selection using high-dimensional genomic and environmental data. Theor Appl Genet 127:595–607

    Article  PubMed  Google Scholar 

  • Jiang Y, Reif JC (2015) Modelling epistasis in genomic selection. Genetics 201:759–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Schulthess AW, Rodemann B, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G (2017) Validating the prediction accuracies of marker-assisted and genomic selection of Fusarium head blight resistance in wheat using an independent sample. Theor Appl Genet 130:471–482

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Schmidt RH, Reif JC (2018) Haplotype-based genome-wide prediction models exploit local epistatic interactions among markers. G3 Genes Genomes Genet 8:1687–1699

    Google Scholar 

  • Lin Z, Hayes B, Daetwyler H (2014) Genomic selection in crops, trees and forages: a review. Crop Pasture Sci 65:1177–1191

    Article  Google Scholar 

  • Longin CFH, Mi X, Würschum T (2015) Genomic selection in wheat: optimum allocation of test resources and comparison of breeding strategies for line and hybrid breeding. Theor Appl Genet 128:1297–1306

    Article  PubMed  Google Scholar 

  • Martinez-Vazquez P (2016) Crop lodging induced by wind and rain. Agric For Meteorol 228:265–275

    Article  Google Scholar 

  • Mirdita V, He S, Zhao Y, Korzun V, Bothe R, Ebmeyer E, Reif JC, Jiang Y (2015) Potential and limits of whole genome prediction of resistance to Fusarium head blight and Septoria tritici blotch in a vast Central European elite winter wheat population. Theor Appl Genet 128:2471–2481

    Article  CAS  PubMed  Google Scholar 

  • Money D, Gardner K, Migicovsky Z, Schwaninger H, Zhong G-Y, Myles S (2015) LinkImpute: fast and accurate genotype imputation for nonmodel organisms. G3 Genes Genomes Genet 5:2383–2390

    Google Scholar 

  • Mu H, Jiang D, Wollenweber B, Dai T, Jing Q, Cao W (2010) Long-term low radiation decreases leaf photosynthesis, photochemical efficiency and grain yield in winter wheat. J Agron Crop Sci 196:38–47

    Article  CAS  Google Scholar 

  • Ouyang T, Kusiak A, He Y (2017) Predictive model of yaw error in a wind turbine. Energy 123:119–130

    Article  Google Scholar 

  • Pérez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198:483–495

    Article  PubMed  PubMed Central  Google Scholar 

  • Piepho H-P, Möhring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881–1888

    Article  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620

    Article  Google Scholar 

  • Roger J (1972) Measure of genetic similarity and genetic distance. Studies in genetics VII. University of Texas publication 7213:145–153

    Google Scholar 

  • Rutkoski J, Singh R, Huerta-Espino J, Bhavani S, Poland J, Jannink J, Sorrells M (2015) Genetic gain from phenotypic and genomic selection for quantitative resistance to stem rust of wheat. Plant Genome 8:1–10

    Google Scholar 

  • Saha C, Ammon C, Berg W, Fiedler M, Loebsin C, Sanftleben P, Brunsch R, Amona T (2014) Seasonal and diel variations of ammonia and methane emissions from a naturally ventilated dairy building and the associated factors influencing emissions. Sci Total Environ 468–469:53–62

    Article  CAS  PubMed  Google Scholar 

  • Saint Pierre C, Burgueño J, Crossa J, Dávila GF, López PF, Moya ES, Moreno JI, Muela VH, Villa VZ, Vikram P (2016) Genomic prediction models for grain yield of spring bread wheat in diverse agro-ecological zones. Scientific reports 6:27312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair T, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci 29:90–98

    Article  Google Scholar 

  • Sousa MBE, Cuevas J, Couto EGDO, Pérez-Rodríguez P, Jarquín D, Fritsche-Neto R, Burgueño J, Crossa J (2017) Genomic-enabled prediction in maize using kernel models with genotype × environment interaction. G3 Genes Genomes Genet 7:1995–2014

    Google Scholar 

  • Sterling M, Baker C, Berry P, Wade A (2003) An experimental investigation of the lodging of wheat. Agric For Meteorol 119:149–165

    Article  Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L (2014) Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Liu J, Ding X, Bijma P, de Koning D-J, Zhang Q (2010) Best linear unbiased prediction of genomic breeding values using a trait-specific marker-derived relationship matrix. PLoS One 5:e12648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Gao W, Slusser JR, Grant RH, Wang C (2003) Yield and yield formation of field winter wheat in response to supplemental solar ultraviolet-B radiation. Agric For Meteorol 120:279–283

    Article  Google Scholar 

Download references

Acknowledgements

This study is funded by the Grain Research Development Corporation (GRDC, US00081), the University of Sydney and Agriculture Victoria. The authors would like to thank Dr. Yong Jiang for his input on genomic prediction models and the manuscript and Dr. Dunia Pino del Carpio for helping to revise the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SH, HDD and RTr designed the study. SH conducted genomic prediction analyses. FS performed genotype quality control and imputation. RTr and RTh developed the plant populations and collected the phenotypes. KF and MJH genotyped the population. All authors wrote and approved the final manuscript.

Corresponding author

Correspondence to Sang He.

Ethics declarations

Conflicts of interest

All authors declare that there is no conflict of interest.

Additional information

Communicated by Albrecht E. Melchinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 307 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, S., Thistlethwaite, R., Forrest, K. et al. Extension of a haplotype-based genomic prediction model to manage multi-environment wheat data using environmental covariates. Theor Appl Genet 132, 3143–3154 (2019). https://doi.org/10.1007/s00122-019-03413-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03413-1

Navigation