Skip to main content
Log in

QTL mapping of resistance to bacterial fruit blotch in Citrullus amarus

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Six QTLs were associated with affected leaf area in response to inoculation with Acidovorax citrulli in a recombinant inbred line population of Citrullus amarus.

Abstract

Acidovorax citrulli, the causal agent of bacterial fruit blotch (BFB) of cucurbits, has the potential to devastate production of watermelon and other cucurbits. Despite decades of research on host-plant resistance to A. citrulli, no germplasm has been found with immunity and only a few sources with various levels of BFB resistance have been identified, but the genetic basis of resistance in these watermelon sources are not known. Most sources of resistance are plant introductions of Citrullus amarus (citron melon), a closely related species that crosses readily with cultivated watermelon (Citrullus lanatus L.). In this study, we evaluated a recombinant inbred line population (N = 200), derived from a cross between BFB-resistant (USVL246-FR2) and BFB-susceptible (USVL114) C. amarus lines, for foliar resistance to A. citrulli in three replicated greenhouse trials. We found the genetics of BFB resistance to be complicated by strong environmental influence, low heritability and significant genotype-by-environment interactions. QTL mapping of affected leaf area identified six QTL that each explained between 5 and 15% of the variation in BFB resistance in the population. This study represents the first identification of QTL associated with resistance to A. citrulli in any cucurbit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amadi JE, Adebola MO, Eze CS (2009) Isolation and identification of a bacterial blotch organism from watermelon (Citrullus lanatus (Thunb.) Matsum. And Nakai). Afr J Agric Res 4:1291–1294

    Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D et al (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265:1856–1860

    Article  CAS  PubMed  Google Scholar 

  • Black MC, Isakeit T, Barnes LW, Kucharek TA, Hoover RJ, Hodge NC (1994) First report of bacterial fruit blotch of watermelon in Texas. Plant Dis 78:831

    Article  Google Scholar 

  • Block CC, Shepherd LM (2008) Long-term survival and seed transmission of Acidovorax avenae subsp citrulli in melon and watermelon seed. Plant Health Progress 10:1094. https://doi.org/10.1094/php-2008-1219-01-br

    Article  Google Scholar 

  • Branham SE, Levi A, Wechter WP (2017) A GBS-SNP-based linkage map and quantitative trait loci (QTL) associated with resistance to Fusarium oxysporum f. sp. niveum race 2 identified in Citrullus lanatus var. citroides. Theor Appl Genet 130:319–330. https://doi.org/10.1007/s00122-016-2813-0

    Article  CAS  PubMed  Google Scholar 

  • Branham SE, Levi A, Wechter WP (2018) QTL mapping identifies novel source of resistance to Fusarium wilt race 1 in Citrullus amarus. Plant Dis. https://doi.org/10.1094/pdis-09-18-1677-re

    Article  Google Scholar 

  • Broman KW, Sen S (2009) A guide to QTL mapping with R/qtl, vol 46. Springer, New York

    Book  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890. https://doi.org/10.1093/bioinformatics/btg112

    Article  CAS  PubMed  Google Scholar 

  • Burdman S, Kots N, Kritzman G, Kopelowitz J (2005) Molecular, physiological, and host-range characterization of Acidovorax avenae subsp. citrulli isolates from watermelon and melon in Israel. Plant Dis 89:1339–1347

    Article  CAS  PubMed  Google Scholar 

  • Carvalho FCQ, Santos LA, Dias RCS, Mariano RLR, Souza EB (2013) Selection of watermelon genotypes for resistance to bacterial fruit blotch. Euphytica 190:169–180

    Article  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814. https://doi.org/10.1016/j.cell.2006.02.008

    Article  CAS  PubMed  Google Scholar 

  • Chomicki G, Renner SS (2015) Watermelon origin solved with molecular phylogenetics including Linnaean material: another example of museomics. New Phytol 205:526–532. https://doi.org/10.1111/nph.13163

    Article  PubMed  Google Scholar 

  • Core Team R (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Crall JM, Schenck NC (1969) Bacterial fruit rot of watermelon in Florida. Plant Dis Report 53:74–75

    Google Scholar 

  • Demir G (1996) A new bacterial disease of watermelon in Türkiye: bacterial fruit blotch of watermelon (Acidovorax avenae subsp. citrulli (Schaad et al.) Willems et al.). J Turk Phytopathol 25:43–49

    Google Scholar 

  • Dutta B, Avci U, Hahn MG, Walcott RR (2012) Location of Acidovorax citrulli in infested watermelon seeds is influenced by the pathway of bacterial invasion. Phytopathology 102:461–468

    Article  CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. https://doi.org/10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmour AR, Gogel BJ, Cullis BR et al (2009) ASReml user guide release 3.0. VSN International Ltd, Hemel Hemp-Stead

    Google Scholar 

  • Gitaitis R, Walcott RR (2007) The epidemiology and management of seedborne bacterial diseases. Annu Rev Phytopathol 45:371–397

    Article  CAS  PubMed  Google Scholar 

  • Godiard L, Sauviac L, Torii KU et al (2003) ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J 36:353–365. https://doi.org/10.1046/j.1365-313X.2003.01877.x

    Article  CAS  PubMed  Google Scholar 

  • Grant MR, Godiard L, Straube E et al (1995) Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science 269:843–846

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Zhang J, Sun H et al (2013) The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 45:51–58. https://doi.org/10.1038/ng.2470

    Article  CAS  PubMed  Google Scholar 

  • Gusmini G, Song R, Wehner TC (2005) Inheritance of resistance to gummy stem blight in watermelon. Crop Sci 45:582–588. https://doi.org/10.21273/HORTSCI12123-17

    Article  Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324. https://doi.org/10.1038/hdy.1992.131

    Article  CAS  PubMed  Google Scholar 

  • Holeva MC, Karafla CD, Glynos PE (2010) Acidovorax avenae subsp. citrulli newly reported to cause bacterial fruit blotch of watermelon in Greece. Plant Pathol 59:797

    Article  Google Scholar 

  • Hopkins DL (1995) Copper-containing fungicides reduce the spread of bacterial fruit blotch of watermelon in the greenhouse. Phytopathology 85:510

    Google Scholar 

  • Hopkins DL, Levi A (2008) Progress in the development of Crimson sweet-type watermelon breeding lines with resistance to Acidovorax avenae subsp. citrulli. In: Pitrat M (ed) Cucurbitaceae 2008. Proceedings of the IXth EUCARPIA meeting on genetics and breeding of Cucurbitaceae. Il’institut National de la, Recherche Agronomique, Avignon

    Google Scholar 

  • Hopkins DL, Thompson CM (2002) Seed transmission of Acidovorax avenae subsp. citrulli in cucurbits. HortScience 37:924–926

    Article  Google Scholar 

  • Hopkins DL, Thompson CM, Hilgren J, Lovic B (2003) Wet seed treatment with peroxyacetic acid for the control of bacterial fruit blotch and other seedborne diseases of watermelon. Plant Dis 87:195–1499

    Article  Google Scholar 

  • Jacobs JL, Damicone JP, McCraw BD (1992) First report of bacterial fruit blotch of watermelon in Oklahoma. Plant Dis 76:1185

    Article  Google Scholar 

  • Kousik CS, Shepard BM, Hassell R et al (2007) Potential sources of resistance to broad mites (Polyphagotarsonemus latus) in watermelon germplasm. HortScience 42:1539–1544

    Article  Google Scholar 

  • Kousik CS, Ikerd JL, Wechter P et al (2012) Resistance to phytophthora fruit rot of watermelon caused by Phytophthora capsici in US plant introductions. HortScience 47:1682–1689

    Article  Google Scholar 

  • Kruglyak L, Lander ES (1995) A nonparametric approach for mapping quantitative trait loci. Genetics 139:1421–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47(260):583–621

    Article  Google Scholar 

  • Latin RX (1996) Bacterial fruit blotch. In: Zitter TA, Hopkins DL, Thomas CE (eds) Compendium of cucurbit diseases. APS Press, St. Paul

    Google Scholar 

  • Latin RX, Rane KK (1990) Bacterial fruit blotch of watermelon in Indiana. Plant Dis 74:331

    Article  Google Scholar 

  • Levi A, Thomas CE, Wehner TC, Zhang X (2001) Low genetic diversity indicates the need to broaden the genetic base of cultivated watermelon. HortScience 36:1096–1101

    Article  CAS  Google Scholar 

  • Levi A, Thies JA, Wechter WP et al (2013) High frequency oligonucleotides: targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars. Genet Resour Crop Evol 60:427–440. https://doi.org/10.1007/s10722-012-9845-3

    Article  CAS  Google Scholar 

  • Li B, Shi Y, Shan C, Zhou Q, Ibrahim M, Wang Y, Wu G, Li H, Xie G, Sun G (2013) Effect of chitosan solution on inhibition of Acidovorax citrulli causing bacterial fruit blotch of watermelon. J Sci Food Agric 93:1010–1015

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Wehner TC (2015) Flowering stage resistance to bacterial fruit blotch in the watermelon germplasm collection. Crop Sci 55:727–736. https://doi.org/10.2135/cropsci2014.01.0071

    Article  Google Scholar 

  • Manichaikul A, Moon JY, Sen Ś et al (2009) A model selection approach for the identification of quantitative trait loci in experimental crosses, allowing epistasis. Genetics 181:1077–1086. https://doi.org/10.1534/genetics.108.094565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mindrinos M, Katagiri F, Yu GL, Ausubel FM (1994) The A. thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78:1089–1099. https://doi.org/10.1016/0092-8674(94)90282-8

    Article  CAS  PubMed  Google Scholar 

  • Mirik M, Aysan Y, Sahin F (2006) Occurrence of bacterial fruit blotch of watermelon caused by Acidovorax avenae subsp. citrulli in the eastern Mediterranean region of Turkey. Plant Dis 90:829

    Article  CAS  PubMed  Google Scholar 

  • Mundt CC (2014) Durable resistance: a key to sustainable management of pathogens and pests. Infect Genet Evol 27:446–455

    Article  PubMed  Google Scholar 

  • Palkovics L, Petróczy M, Kertész B, Németh J (2008) First report of bacterial fruit blotch caused by Acidovorax avenae subsp. citrulli in Hungary. Plant Dis 92:834

    Article  CAS  PubMed  Google Scholar 

  • Popović T, Ivanović Ž (2015) Occurrence of Acidovorax citrulli causing bacterial fruit blotch of watermelon in Serbia. Plant Dis 99:886

    Article  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Somodi GC, Jones JB, Hopkins DL, Stall RE, Kucharek TA, Hodge NC, Watterson JC (1991) Occurrence of a bacterial watermelon fruit blotch in Florida. Plant Dis 75:1053–1056

    Article  Google Scholar 

  • Song W, Wang G-L, Chen L et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Tetteh AY, Wehner TC, Davis AR (2010) Identifying resistance to powdery mildew race 2 W in the USDA-ARS watermelon germplasm collection. Crop Sci 50:933–939. https://doi.org/10.2135/cropsci2009.03.0135

    Article  Google Scholar 

  • Thies JA, Levi A (2007) Characterization of watermelon (Citrullus lanatus var. citroides) germplasm for resistance to root-knot nematodes. HortScience 42:1530–1533

    Article  Google Scholar 

  • Walcott RR, Gitaitis RD (2000) Detection of Acidovorax avenae subsp. citrulli in watermelon seed using immunomagnetic separation and the polymerase chain reaction. Plant Dis 84:470–474

    Article  CAS  PubMed  Google Scholar 

  • Walcott RR, Gitaitis RD, Castro AC (2003) Role of blossoms in watermelon seed infestation by Acidovorax avenae subsp. citrulli. Phytopathology 93:528–534

    Article  CAS  PubMed  Google Scholar 

  • Walcott RR, Fessehaie A, Castro AC (2004) Differences in pathogenicity between two genetically distinct groups of Acidovorax avenae subsp. citrulli on cucurbit hosts. J Phytopathol 152:277–285

    Article  Google Scholar 

  • Wang T, Sun B, Yang Y, Zhao T (2015) Genome sequence of Acidovorax citrulli Group 1 strain pslb65 causing bacterial fruit blotch of melons. Genome Announc 3:e00310–e00315. https://doi.org/10.1128/genomeA.00327-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Webb RE, Goth RW (1965) A seed-borne bacterium isolated from watermelon. Plant Dis Report 49:818–821

    Google Scholar 

  • Wechter WP, Levi A, Ling KS, Kousik C (2011) Identification of resistance to Acidovorax avenae subsp. citrulli among melon (Cucumis spp) plant introductions. HortScience 46:207–212

    Article  Google Scholar 

  • Wechter WP, Kousik C, McMillan M, Levi A (2012) Identification of resistance to Fusarium oxysporum f. sp. niveum race 2 in Citrullus lanatus var. citroides plant introductions. HortScience 47:334–338. https://doi.org/10.1002/ird.1717

    Article  Google Scholar 

  • Wechter WP, Katawczik ML, Farnham MW, Levi A (2016) Watermelon germplasm lines USVL246-FR2 and USVL252-FR2 tolerant to Fusarium oxysporum f. sp. niveum race 2. HortScience 51:1065–1067

    Article  Google Scholar 

  • Yoshimura S, Yamanouchi U, Katayose Y et al (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95:1663–1668. https://doi.org/10.1073/pnas.95.4.1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Guo S, Gong G et al (2011) Sources of resistance to race 2WF powdery mildew in U.S. watermelon plant introductions. HortScience 46:1349–1352

    Article  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L et al (2004) Bacterial disease resistancein Arabidopsis through flagellin perception. Nature 428:1–4. https://doi.org/10.1038/nature02485

    Article  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D et al (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760. https://doi.org/10.1016/j.cell.2006.03.037

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research used resources provided by the SCINet project of the USDA Agricultural Research Service, ARS Project Number 0500-00093-001-00-D.

Funding

This study was funded, in part, by the United States Department of Agriculture (USDA) Project Number 6080-22000-028-00 and the National Institute of Food and Agriculture, Specialty Crops Research Initiative project number 6080-21000-019-08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Patrick Wechter.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiment conducted complies with the laws of the United States.

Additional information

Communicated by Michael J. Havey.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

Chromosomal location and functional information for 1916 genes that collocated with QTLs that confer resistance to Acidovorax citrulli (CSV 340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branham, S.E., Levi, A., Katawczik, M.L. et al. QTL mapping of resistance to bacterial fruit blotch in Citrullus amarus. Theor Appl Genet 132, 1463–1471 (2019). https://doi.org/10.1007/s00122-019-03292-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03292-6

Navigation