Skip to main content
Log in

Genetic mapping of a barley leaf rust resistance gene Rph26 introgressed from Hordeum bulbosum

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The quantitative barley leaf rust resistance gene, Rph26, was fine mapped within a H. bulbosum introgression on barley chromosome 1HL. This provides the tools for pyramiding with other resistance genes.

Abstract

A novel quantitative resistance gene, Rph26, effective against barley leaf rust (Puccinia hordei) was introgressed from Hordeum bulbosum into the barley (Hordeum vulgare) cultivar ‘Emir’. The effect of Rph26 was to reduce the observed symptoms of leaf rust infection (uredinium number and infection type). In addition, this resistance also increased the fungal latency period and reduced the fungal biomass within infected leaves. The resulting introgression line 200A12, containing Rph26, was backcrossed to its barley parental cultivar ‘Emir’ to create an F2 population focused on detecting interspecific recombination within the introgressed segment. A total of 1368 individuals from this F2 population were genotyped with flanking markers at either end of the 1HL introgression, resulting in the identification of 19 genotypes, which had undergone interspecific recombination within the original introgression. F3 seeds that were homozygous for the introgressions of reduced size were selected from each F2 recombinant and were used for subsequent genotyping and phenotyping. Rph26 was genetically mapped to the proximal end of the introgressed segment located at the distal end of chromosome 1HL. Molecular markers closely linked to Rph26 were identified and will enable this disease resistance gene to be combined with other sources of quantitative resistance to maximize the effectiveness and durability of leaf rust resistance in barley breeding. Heterozygous genotypes containing a single copy of Rph26 had an intermediate phenotype when compared with the homozygous resistant and susceptible genotypes, indicating an incompletely dominant inheritance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayliffe M, Periyannan SK, Feechan A, Dry I, Schumann U, Wang M-B, Pryor A, Lagudah E (2013) A simple method for comparing fungal biomass in infected plant tissues. Mol Plant-Microbe Interact 26(6):658–667

    Article  CAS  Google Scholar 

  • Ayliffe M, Periyannan SK, Feechan A, Dry I, Schumann U, Lagudah E, Pryor A (2014) Simple quantification of in planta fungal biomass. In: Birch P, Jones JT, Bos JIB (eds) Plant-pathogen interactions: methods and protocols. Humana Press, Totowa, pp 159–172

    Chapter  Google Scholar 

  • Bettgenhaeuser J, Gilbert B, Ayliffe M, Moscou MJ (2014) Nonhost resistance to rust pathogens—a continuation of continua. Front Plant Sci 5:664

    Article  Google Scholar 

  • Boopathi NM (2012) Genetic mapping and marker assisted selection: basics, practice and benefits. Springer, New Delhi. https://doi.org/10.1007/978-81-322-0958-4

    Book  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  Google Scholar 

  • Chao S, Somers D (2012) Wheat and barley DNA extraction in 96-well plates. MAS wheat. http://maswheat.ucdavis.edu/protocols/general_protocols/DNA_extraction_003.htm. Accessed June 2017

  • Clifford BC (1985) Barley Leaf Rust. In: Roelfs AP, Bushnell WR (eds) The cereal rusts volume II: diseases, distribution and control. Academic Press, New York

    Google Scholar 

  • Fetch T Jr, Johnston P, Pickering R (2009) Chromosomal location and inheritance of stem rust resistance transferred from Hordeum bulbosum into cultivated barley (H. vulgare). Phytopathology 99:339–343

    Article  CAS  Google Scholar 

  • Food and Agriculture Organization of the United Nations (2014) FAOSTAT. http://www.fao.org/faostat/en/#data/QC. Accessed June 2018

  • Golegaonkar PG, Karaoglu H, Park RF (2009) Molecular mapping of leaf rust resistance gene Rph14 in Hordeum vulgare. Theor Appl Genet 119(7):1281–1288. https://doi.org/10.1007/s00122-009-1132-0

    Article  CAS  PubMed  Google Scholar 

  • Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM (2000) An introduction to genetic analysis, 7th edn. W. H. Freeman & Co Ltd., New York. https://www.ncbi.nlm.nih.gov/books/NBK21920/

  • Hickey LT, Lawson W, Platz GJ, Dieters M, Franckowiak J (2012) Origin of leaf rust adult plant resistance gene Rph20 in barley. Genome 55:396–399

    Article  CAS  Google Scholar 

  • Hunter EA, Glasbey CA, Naylor REL (1984) The analysis of data from germination tests. J Agric Sci 102(1):207–213

    Article  Google Scholar 

  • International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–717

    Article  Google Scholar 

  • Jie X, Snape JW (1989) The resistance of Hordeum bulbosum and its hybrids with H. vulgare to common fungal pathogens. Euphytica 41:273–276

    Google Scholar 

  • Johnston PA, Timmerman-Vaughan GM, Farnden KJ, Pickering R (2009) Marker development and characterisation of Hordeum bulbosum introgression lines: a resource for barley improvement. Theor Appl Genet 118(8):1429–1437

    Article  Google Scholar 

  • Johnston PA, Niks RE, Meiyalaghan V, Blanchet E, Pickering R (2013) Rph22: mapping of a novel leaf rust resistance gene introgressed from the non-host Hordeum bulbosum L. into cultivated barley (Hordeum vulgare L.). Theor Appl Genet 126(6):1613–1625

    Article  Google Scholar 

  • Johnston PA, Meiyalaghan V, Forbes ME, Habekuß A, Butler RC, Pickering R (2015) Marker assisted separation of resistance genes Rph22 and Rym16Hb from an associated yield penalty in a barley: Hordeum bulbosum introgression line. Theor Appl Genet 128(6):1137–1149

    Article  CAS  Google Scholar 

  • Kasha K, Kao K (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225(5235):874–876

    Article  CAS  Google Scholar 

  • Kong HY (2015) Development of a SNP validation toolset for wheat. Unpublished Honours dissertation, Lincoln University, Lincoln, New Zealand. https://researcharchive.lincoln.ac.nz/handle/10182/6777. Accessed June 2018

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  Google Scholar 

  • Kumar P, He Y, Singh R, Davis RF, Guo H, Paterson AH, Peterson DG, Shen X, Nichols RL, Chee PW (2016) Fine mapping and identification of candidate genes for a QTL affecting Meloidogyne incognita reproduction in Upland cotton. BMC Genom 17(1):567

    Article  Google Scholar 

  • Lee Y, Nelder JA, Pawitan Y (2006) Generalized linear models with random effects: unified analysis via H-likelihood. Chapman & Hall/CRC Press, London, p 416

    Book  Google Scholar 

  • Marcel T, Varshney R, Barbieri M, Jafary H, de Kock M, Graner A, Niks R (2007) A high-density consensus map of barley to compare the distribution of QTLs for partial resistance to Puccinia hordei and of defence gene homologues. Theor Appl Genet 114:487–500

    Article  CAS  Google Scholar 

  • Marcel TC, Gorguet B, Ta MT, Kohutova Z, Vels A, Niks RE (2008) Isolate specificity of quantitative trait loci for partial resistance of barley to Puccinia hordei confirmed in mapping populations and near-isogenic lines. New Phytol 177:743–755

    Article  Google Scholar 

  • Neervoort W, Parlevliet J (1978) Partial resistance of barley to leaf rust, Puccinia hordei. V. Analysis of the components of partial resistance in eight barley cultivars. Euphytica 27(1):33–39

    Article  Google Scholar 

  • O’Neill ME, Thompson PC, Jacobs BC, Brain P, Butler RC, Turner H, Mitakda B (2004) Fitting and comparing seed germination models with a focus on the inverse Gaussian distribution. Aust N Z J Stat 46(3):349–366

    Article  Google Scholar 

  • Park R (2003) Pathogenic specialization and pathotype distribution of Puccinia hordei in Australia, 1992 to 2001. Plant Dis 87(11):1311–1316

    Article  CAS  Google Scholar 

  • Park RF, Golegaonkar PG, Derevnina L, Sandhu KS, Karaoglu H, Elmansour HM, Dracatos PM, Singh D (2015) Leaf rust of cultivated barley: pathology and control. Annu Rev Phytopathol 53:565–589

    Article  CAS  Google Scholar 

  • Parlevliet J (2002) Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124(2):147–156

    Article  CAS  Google Scholar 

  • Paulitz TC, Steffenson BJ (2011) Biotic stress in barley: disease problems and solutions. In: Ullrich SE (ed) Barley: production, improvement, and uses. Blackwell Publishing, Hoboken, pp 307–354. https://doi.org/10.1002/9780470958636.ch11

    Chapter  Google Scholar 

  • Payne R, Murray D, Harding S (2015) The Guide to the Genstat® Command Language (Release 18). VSN International, Hemel Hempsted, Hertfordshire, United Kingdom

  • Pickering RA, Hill AM, Michel M, Timmerman-Vaughan GM (1995) The transfer of a powdery mildew resistance gene from Hordeum bulbosum L. to barley (H. vulgare L.) chromosome 2 (2I). Theor Appl Genet 91(8):1288–1292. https://doi.org/10.1007/bf00220943

    Article  CAS  PubMed  Google Scholar 

  • Pickering R, Niks RE, Johnston PA, Butler RC (2004) Importance of the secondary genepool in barley genetics and breeding. II. Disease resistance, agronomic performance and quality. Czech J Genet Plant Breed 40(3):79–85

    Article  Google Scholar 

  • Pickering R, Ruge-Wehling B, Johnston P, Schweizer G, Ackermann P, Wehling P (2006) The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breed 125:576–579

    Article  CAS  Google Scholar 

  • Pickering R, Johnston P, Meiyalaghan V, Ebdon S, Morgan E (2010) Hordeum vulgareH. bulbosum introgression lines. Barley Genet Newsl 40:1

    Google Scholar 

  • Qi X, Niks R, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet 96:1205–1215

    Article  CAS  Google Scholar 

  • Qi X, Fufa F, Sijtsma D, Niks R, Lindhout P, Stam P (2000) The evidence for abundance of QTLs for partial resistance to Puccinia hordei on the barley genome. Mol Breed 6:1–9

    Article  CAS  Google Scholar 

  • Qin B, Cao A, Wang H, Chen T, You FM, Liu Y, Ji J, Liu D, Chen P, Wang XE (2011) Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet 123(2):207–218. https://doi.org/10.1007/s00122-011-1577-9

    Article  PubMed  Google Scholar 

  • Ross GJS (1984) Parallel model analysis: fitting non-linear models to several sets of data. In: COMPSTAT 1984—sixth symposium on computational statistics, pp 458–463

    Chapter  Google Scholar 

  • Ruge B, Linz A, Pickering R, Proeseler G, Greif P, Wehling P (2003) Mapping of Rym14 Hb, a gene introgressed from Hordeum bulbosum and conferring resistance to BaMMV and BaYMV in barley. Theor Appl Genet 107:965–971

    Article  CAS  Google Scholar 

  • Ruge-Wehling B, Linz A, Habekuß A, Wehling P (2006) Mapping of Rym16 Hb, the second soil-borne virus-resistance gene introgressed from Hordeum bulbosum. Theor Appl Genet 113(5):867–873

    Article  CAS  Google Scholar 

  • Schmalenbach I, March TJ, Bringezu T, Waugh R, Pillen K (2011) High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the Illumina GoldenGate assay. G3 Genes Genom Genet 1(3):187–196

    CAS  Google Scholar 

  • Scholz M, Ruge-Wehling B, Habekuß A, Schrader O, Pendinen G, Fischer K, Wehling P (2009) Ryd4 Hb: a novel resistance gene introgressed from Hordeum bulbosum into barley and conferring complete and dominant resistance to the barley yellow dwarf virus. Theor Appl Genet 119:837–849

    Article  CAS  Google Scholar 

  • Shtaya M, Sillero J, Flath K, Pickering R, Rubiales D (2007) The resistance to leaf rust and powdery mildew of recombinant lines of barley (Hordeum vulgare L.) derived from H. vulgare x H. bulbosum crosses. Plant Breed 126:259–267

    Article  CAS  Google Scholar 

  • Statistics New Zealand (2016) Agricultural Production Statistics: June 2016. http://www.stats.govt.nz/browse_for_stats/industry_sectors/agriculture-horticulture-forestry/AgriculturalProduction_final_HOTPJun16final.aspx. Accessed June 2018

  • Szigat G, Pohler W (1982) Hordeum bulbosum × H. vulgare hybrids and their backcrosses with cultivated barley. Cereal Res Commun 10:73–78

    Google Scholar 

  • Taylor and Butler (2017) R Package ASMap: efficient genetic linkage map construction and diagnosis. J Stat Softw https://arxiv.org/abs/1705.06916. Accessed June 2017

  • Toubia-Rahme H, Johnston P, Pickering R, Steffenson B (2003) Inheritance and chromosomal location of Septoria passerinii resistance introgressed from Hordeum bulbosum into Hordeum vulgare. Plant Breed 122:405–409

    Article  Google Scholar 

  • von Post R, von Post L, Dayteg C, Nilsson M, Forster BP, Tuvesson S (2003) A high-throughput DNA extraction method for barley seed. Euphytica 130(2):255–260

    Article  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  Google Scholar 

  • VSN International Ltd. (2013) CycDesigN 5.1 A package for the computer generation of experimental designs. (Version 4.0): VSN International Ltd, Hertfordshire, United Kingdom

  • VSN International Ltd. (2015) Genstat Reference Manual (Release 18), Part 3: procedures. VSN International Ltd, Hertfordshire, United Kingdom, p 1519

  • Walther U, Rapke H, Proeseler G, Szigat G (2000) Hordeum bulbosum—a new source of disease resistance—transfer of resistance to leaf rust and mosaic viruses from H. bulbosum into winter barley. Plant Breeding 119:215–218

    Article  Google Scholar 

  • Wendler N, Mascher M, Himmelbach A, Johnston P, Pickering R, Stein N (2015) Bulbosum to go: a toolbox to utilize Hordeum vulgare/bulbosum introgressions for breeding and beyond. Mol Plant 8(10):1507–1519

    Article  CAS  Google Scholar 

  • Xu J, Kasha KJ (1992) Transfer of a dominant gene for powdery mildew resistance and DNA from Hordeum bulbosum into cultivated barley (H. vulgare). Theor Appl Genet 84(7):771–777. https://doi.org/10.1007/bf00227383

    Article  CAS  PubMed  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14(6):415–421

    Article  Google Scholar 

  • Zhang X, Han D, Zeng Q, Duan Y, Yuan F, Shi J, Wang Q, Wu J, Huang L, Kang Z (2013) Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice. PLoS One 8(3):e57885

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Merle Forbes and Rachael Warren for technical support. Funding provided by The New Zealand Institute for Plant and Food Research Limited Strategic Science Investment Fund (Cropping Systems). Thanks to Dr Samantha Baldwin, Jamie Macalister and Dr Sathiyamoorthy Meiyalaghan for critical reading of this manuscript. Many thanks to Donna Gibson for taking the photographs and helping with the figure and table designs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul A. Johnston.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Xiaoquan Qi.

Richard Pickering: Retired, formerly of the New Zealand Institute for Plant & Food Research Limited, Lincoln 7608, Canterbury, New Zealand.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Kong, H.Y., Meiyalaghan, V. et al. Genetic mapping of a barley leaf rust resistance gene Rph26 introgressed from Hordeum bulbosum. Theor Appl Genet 131, 2567–2580 (2018). https://doi.org/10.1007/s00122-018-3173-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-018-3173-8

Navigation