Theoretical and Applied Genetics

, Volume 131, Issue 4, pp 917–928 | Cite as

QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage

  • Jinshuai Shu
  • Yumei Liu
  • Lili Zhang
  • Zhansheng Li
  • Zhiyuan Fang
  • Limei Yang
  • Mu Zhuang
  • Yangyong Zhang
  • Honghao Lv
Original Article


Key message

A major QTL controlling early flowering in broccoli × cabbage was identified by marker analysis and next-generation sequencing, corresponding to GRF6 gene conditioning flowering time in Arabidopsis.


Flowering is an important agronomic trait for hybrid production in broccoli and cabbage, but the genetic mechanism underlying this process is unknown. In this study, segregation analysis with BC1P1, BC1P2, F2, and F2:3 populations derived from a cross between two inbred lines “195” (late-flowering) and “93219” (early flowering) suggested that flowering time is a quantitative trait. Next, employing a next-generation sequencing-based whole-genome QTL-seq strategy, we identified a major genomic region harboring a robust flowering time QTL using an F2 mapping population, designated Ef2.1 on cabbage chromosome 2 for early flowering. Ef2.1 was further validated by indel (insertion or deletion) marker-based classical QTL mapping, explaining 51.5% (LOD = 37.67) and 54.0% (LOD = 40.5) of the phenotypic variation in F2 and F2:3 populations, respectively. Combined QTL-seq and classical QTL analysis narrowed down Ef1.1 to a 228-kb genomic region containing 29 genes. A cabbage gene, Bol024659, was identified in this region, which is a homolog of GRF6, a major gene regulating flowering in Arabidopsis, and was designated BolGRF6. qRT-PCR study of the expression level of BolGRF6 revealed significantly higher expression in the early flowering genotypes. Taken together, our results provide support for BolGRF6 as a possible candidate gene for early flowering in the broccoli line 93219. The identified candidate genomic regions and genes may be useful for molecular breeding to improve broccoli and cabbage flowering times.



This work was supported by the National Natural Science Foundation of China (Grant No. 31372067), the China Agriculture Research System (Grant No. CARS-25-A), the Key Projects in the National Science and Technology Pillar Program of China (Grant No. 2013BAD01B04), the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P.R. China, and the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (Grant No. CAAS-ASTIP-IVFCAAS). We thank Tom Buckle, MSc, from Liwen Bianji, Edanz Group China (, for editing the English text of a draft of this manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments in this study comply with the current laws of China.

Supplementary material

122_2017_3047_MOESM1_ESM.pdf (719 kb)
Supplementary material 1 (PDF 718 kb)
122_2017_3047_MOESM2_ESM.xlsx (15 kb)
Supplementary material 2 (XLSX 14 kb)
122_2017_3047_MOESM3_ESM.xlsx (16 kb)
Supplementary material 3 (XLSX 15 kb)
122_2017_3047_MOESM4_ESM.xlsx (13 kb)
Supplementary material 4 (XLSX 13 kb)


  1. Abe M, Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056CrossRefPubMedGoogle Scholar
  2. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178CrossRefPubMedGoogle Scholar
  3. Bergsma JG, Li C, Lesniewska K, Sivasithamparam K, Yang H (2008) Identification of quantitative trait loci (QTLs) influencing early vigour, height, flowering date, and seed size and their implications for breeding of narrow-leafed lupin (Lupinus angustifolius L.). Aust J Agric 59:527–535CrossRefGoogle Scholar
  4. Chen QJ, Zhang HY, Wang YJ, Li WY, Zhang F, Mao AJ, Cheng JH, Chen MY (2010) Mapping and analyzing QTLs of yield-associated agronomic traits of greenhouse cucumbers. Sci Agric Sin 43:112–122Google Scholar
  5. Choi J, Hyun Y, Kang MJ, In Yun H, Yun JY, Lister C, Dean C, Amasino RM, Noh B, Noh YS, Choi Y (2009) Resetting and regulation of FLOWERING LOCUS C expression during Arabidopsis reproductive development. Plant J 57:918–931CrossRefPubMedGoogle Scholar
  6. Department for Environment, Food and Rural Affairs (DEFRA) (2010) Basic horticultural statistics for the United Kingdom. DEFRA UK.
  7. Fazio F, Staub JE, Stevens MR (2003) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107:864–874CrossRefPubMedGoogle Scholar
  8. Finley JW (2003) The antioxidant responsive element (ARE) may explain the protective effects of cruciferous vegetables on cancer. Nutr Rev 61:250–254CrossRefPubMedGoogle Scholar
  9. Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550CrossRefPubMedGoogle Scholar
  10. Gómez-Lobato ME, Hasperuéb JH, Civelloa PM, Chaves AR, Martínez GA (2012) Effect of 1-MCP on the expression of chlorophyll degrading genes during senescence of broccoli (Brassica oleracea L.). Sci Hortic-Amsterdam 144:208–211CrossRefGoogle Scholar
  11. Ho WWH, Weigel D (2014) Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 26:552–564CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jamalabadi JG, Saidi A, Karami E, Kharkesh M, Talebi R (2013) Molecular mapping and characterization of genes governing time to flowering, seed weight, and plant height in an intraspecific genetic linkage map of chickpea (Cicer arietinum). Biochem Genet 51:387–397CrossRefPubMedGoogle Scholar
  13. Ji XH, Yin L, Shen BY, Zhang L, Wang YG, Feng H (2013) Inheritance analysis of bolting correlated traits using mixed major gene plus polygene model in Brassica rapa. Chin Agric Sci Bull 29:76–82Google Scholar
  14. Jung JH, Ju Y, Seo PJ, Lee JH, Park CM (2012) The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J 69:577–588CrossRefPubMedGoogle Scholar
  15. Kardailsky I, Shukla V, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965CrossRefPubMedGoogle Scholar
  16. Kawamoto N, Endo M, Araki T (2015) Expression of a kinase-dead form of CPK33 involved in florigen complex formation causes delayed flowering. Plant Signal Behav 10:12CrossRefGoogle Scholar
  17. Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962CrossRefPubMedGoogle Scholar
  18. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  19. Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Gene Dev 21:397–402CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lee J, Oh M, Park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J 55:832–843CrossRefPubMedGoogle Scholar
  22. Li RQ, Yu C, Li YR, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967CrossRefPubMedGoogle Scholar
  23. Li CX, Lin HQ, Dubcovsky J (2015) Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley. Plant J 84:70–82CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lindhout P, Van Heusden S, Pet G, Van Ooijen JW, Sandbrink H, Verkerk R, Vrielink R, Zabel P (1994) Perspectives of molecular marker assisted breeding for earliness in tomato. Euphytica 79:279–286CrossRefGoogle Scholar
  25. Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han JH, Liou YC, Yu H (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481–1491CrossRefPubMedGoogle Scholar
  26. Liu SY, Liu YM, Yang XH, Tong CB, Edwards D, Parkin IAP, Zhao MX, Ma JX, Yu JY, Huang SM, Wang XY, Wang JY, Lu K, Fang ZY, Bancroft I, Yang TJ, Hu Q, Wang XF, Yue Z, Li HJ, Yang LF, Wu J, Zhou Q, Wang WX, King GJ, Pires JC, Lu CX, Wu ZY, Sampath P, Wang Z, Guo H, Pan SK, Yang LM, Min JM, Zhang D, Jin DC, Li WS, Belcram H, Tu JX, Guan M, Qi CK, Du DZ, Li JN, Jiang LC, Batley J, Sharpe AG, Park BS, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong CH, Wang L, Li JP, Hu ZY, Zhuang M, Huang Y, Huang JY, Shi JQ, Mei DS, Liu J, Lee TH, Wang JP, Jin HZ, Li ZY, Li X, Zhang JF, Xiao L, Zhou YM, Liu ZS, Liu XQ, Qin R, Tang X, Liu WB, Wang YP, Zhang YY, Lee J, Kim HH, Denoeud F, Xu X, Liang XM, Hua W, Wang XW, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930PubMedPubMedCentralGoogle Scholar
  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  28. Lu HF, Lin T, Klein J, Wang SH, Qi JJ, Zhou Q, Sun JJ, Zhang ZH, Weng YQ, Huang SW (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499CrossRefPubMedGoogle Scholar
  29. Maheswaran M, Huang N, Sreerangasamy S, McCouch S (2000) Mapping quantitative trait loci associated with days to flowering and photoperiod sensitivity in rice (Oryza sativa L.). Mol Breed 6:145–155CrossRefGoogle Scholar
  30. Miao H, Gu XF, Zhang SP, Zhang ZH, Huang SW, Wang Y, Fang ZY (2012) Mapping QTLs for seedling-associated traits in cucumber. Acta Hortic Sin 39:879–887Google Scholar
  31. Michaels SD, Amasino RM (2001) Loss of FLOWERING LOUCS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13:935–936CrossRefPubMedPubMedCentralGoogle Scholar
  32. Moon J, Suh SS, Lee H, Choi KR, Hong CB, Peak NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellins signals for flowering in Arabidopsis. Plant J 35:613–623CrossRefPubMedGoogle Scholar
  33. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4325CrossRefPubMedPubMedCentralGoogle Scholar
  34. O’Rawe J, Jiang T, Sun GQ, Wu YY, Wang W, Hu JC, Bodily P, Tian LF, Hakonarson H, Johnson WE, Wei Z, Wang K, Lyon GJ (2013) Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing. Genome Med 5:28CrossRefPubMedPubMedCentralGoogle Scholar
  35. Panaud O, Chen X, McCouch S (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607PubMedGoogle Scholar
  36. Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001) Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13:2687–2702CrossRefPubMedPubMedCentralGoogle Scholar
  37. Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. BioEssays 26:363–373CrossRefPubMedGoogle Scholar
  38. Qin ZR, Wu JJ, Geng SF, Feng N, Chen FJ, Kong XC, Song GY, Chen K, Li AL, Mao L, Wu L (2016) Regulation of FT splicing by an endogenous cue in temperate grasses. Nat Commun 8:14320CrossRefGoogle Scholar
  39. Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA 97:3753–3758CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shu J, Liu Y, Fang Z, Yang L, Zhang L, Zhuang M, Zhang Y, Li Z, Sun P (2014) Study on the floral characteristics and structure in two types of male sterile lines of broccoli (Brassica oleracea var. italica). J Plant Genet Resour 15:113–119Google Scholar
  41. Shu J, Liu Y, Li Z, Zhang L, Fang Z, Yang L, Zhuang M, Zhang Y, Sun P (2015a) Effect of different pruning methods on flowering and fruiting characteristics between different types of male sterile lines in broccoli seed plants. Acta Hortic Sin 42:689–696Google Scholar
  42. Shu J, Liu Y, Li Z, Zhang L, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H (2015b) Organelle simple sequence repeat markers help to distinguish carpelloid stamen and normal cytoplasmic male sterile sources in broccoli. PLoS One 10:e0138750CrossRefPubMedPubMedCentralGoogle Scholar
  43. Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120CrossRefPubMedGoogle Scholar
  44. Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183CrossRefPubMedGoogle Scholar
  45. Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332-U97CrossRefGoogle Scholar
  46. Taoka K, Ohki I, Tsuji H, Kojima C, Shimamoto K (2013) Structure and function of florigen and the receptor complex. Trends Plant Sci 18:287–294CrossRefPubMedGoogle Scholar
  47. Van Ooijen JW (2006) Joinmap 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WagenigenGoogle Scholar
  48. Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) Map QTL4.0, software for the calculation of QTL positions on genetic maps. Plant Research International, WagenigenGoogle Scholar
  49. Walley PG, Carder J, Skipper E, Mathas E, Lynn J, Pink D, Buchanan-Wollaston V (2012) A new broccoli × broccoli immortal mapping population and framework genetic map: tools for breeders and complex trait analysis. Theor Appl Genet 124:467–484CrossRefPubMedGoogle Scholar
  50. Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749CrossRefPubMedGoogle Scholar
  51. Wigge PA, Kim MC, Jaeger K-E, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059CrossRefPubMedGoogle Scholar
  52. Xu XW, Zeng L, Li Y, Luo SB, Wang HM, Tian YH (2012) Major gene plus poly-gene inheritance analysis of the flowing time in pepper (Capsicum annuum. L). J Biomath 27:755–757Google Scholar
  53. Zhang F, Chen FD, Fang WM, Chen SM, Liu PS, Yin DM (2011) Heterosis and mixed genetic analysis for florescence-related traits of chrysanthemum. J Nanjing Agric Univ 34:31–36Google Scholar
  54. Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B, Tao Y (2012) Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot 63:5451–5462CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jinshuai Shu
    • 1
  • Yumei Liu
    • 1
  • Lili Zhang
    • 1
  • Zhansheng Li
    • 1
  • Zhiyuan Fang
    • 1
  • Limei Yang
    • 1
  • Mu Zhuang
    • 1
  • Yangyong Zhang
    • 1
  • Honghao Lv
    • 1
  1. 1.Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural CropsMinistry of AgricultureBeijingChina

Personalised recommendations