Skip to main content
Log in

QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A major QTL controlling early flowering in broccoli × cabbage was identified by marker analysis and next-generation sequencing, corresponding to GRF6 gene conditioning flowering time in Arabidopsis.

Abstract

Flowering is an important agronomic trait for hybrid production in broccoli and cabbage, but the genetic mechanism underlying this process is unknown. In this study, segregation analysis with BC1P1, BC1P2, F2, and F2:3 populations derived from a cross between two inbred lines “195” (late-flowering) and “93219” (early flowering) suggested that flowering time is a quantitative trait. Next, employing a next-generation sequencing-based whole-genome QTL-seq strategy, we identified a major genomic region harboring a robust flowering time QTL using an F2 mapping population, designated Ef2.1 on cabbage chromosome 2 for early flowering. Ef2.1 was further validated by indel (insertion or deletion) marker-based classical QTL mapping, explaining 51.5% (LOD = 37.67) and 54.0% (LOD = 40.5) of the phenotypic variation in F2 and F2:3 populations, respectively. Combined QTL-seq and classical QTL analysis narrowed down Ef1.1 to a 228-kb genomic region containing 29 genes. A cabbage gene, Bol024659, was identified in this region, which is a homolog of GRF6, a major gene regulating flowering in Arabidopsis, and was designated BolGRF6. qRT-PCR study of the expression level of BolGRF6 revealed significantly higher expression in the early flowering genotypes. Taken together, our results provide support for BolGRF6 as a possible candidate gene for early flowering in the broccoli line 93219. The identified candidate genomic regions and genes may be useful for molecular breeding to improve broccoli and cabbage flowering times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe M, Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056

    Article  CAS  PubMed  Google Scholar 

  • Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, Kanzaki H, Matsumura H, Yoshida K, Mitsuoka C, Tamiru M (2012) Genome sequencing reveals agronomically important loci in rice using MutMap. Nat Biotechnol 30:174–178

    Article  CAS  PubMed  Google Scholar 

  • Bergsma JG, Li C, Lesniewska K, Sivasithamparam K, Yang H (2008) Identification of quantitative trait loci (QTLs) influencing early vigour, height, flowering date, and seed size and their implications for breeding of narrow-leafed lupin (Lupinus angustifolius L.). Aust J Agric 59:527–535

    Article  Google Scholar 

  • Chen QJ, Zhang HY, Wang YJ, Li WY, Zhang F, Mao AJ, Cheng JH, Chen MY (2010) Mapping and analyzing QTLs of yield-associated agronomic traits of greenhouse cucumbers. Sci Agric Sin 43:112–122

    Google Scholar 

  • Choi J, Hyun Y, Kang MJ, In Yun H, Yun JY, Lister C, Dean C, Amasino RM, Noh B, Noh YS, Choi Y (2009) Resetting and regulation of FLOWERING LOCUS C expression during Arabidopsis reproductive development. Plant J 57:918–931

    Article  CAS  PubMed  Google Scholar 

  • Department for Environment, Food and Rural Affairs (DEFRA) (2010) Basic horticultural statistics for the United Kingdom. DEFRA UK. http://www.defra.gov.uk/

  • Fazio F, Staub JE, Stevens MR (2003) Genetic mapping and QTL analysis of horticultural traits in cucumber (Cucumis sativus L.) using recombinant inbred lines. Theor Appl Genet 107:864–874

    Article  CAS  PubMed  Google Scholar 

  • Finley JW (2003) The antioxidant responsive element (ARE) may explain the protective effects of cruciferous vegetables on cancer. Nutr Rev 61:250–254

    Article  PubMed  Google Scholar 

  • Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550

    Article  PubMed  Google Scholar 

  • Gómez-Lobato ME, Hasperuéb JH, Civelloa PM, Chaves AR, Martínez GA (2012) Effect of 1-MCP on the expression of chlorophyll degrading genes during senescence of broccoli (Brassica oleracea L.). Sci Hortic-Amsterdam 144:208–211

    Article  Google Scholar 

  • Ho WWH, Weigel D (2014) Structural features determining flower-promoting activity of Arabidopsis FLOWERING LOCUS T. Plant Cell 26:552–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jamalabadi JG, Saidi A, Karami E, Kharkesh M, Talebi R (2013) Molecular mapping and characterization of genes governing time to flowering, seed weight, and plant height in an intraspecific genetic linkage map of chickpea (Cicer arietinum). Biochem Genet 51:387–397

    Article  CAS  PubMed  Google Scholar 

  • Ji XH, Yin L, Shen BY, Zhang L, Wang YG, Feng H (2013) Inheritance analysis of bolting correlated traits using mixed major gene plus polygene model in Brassica rapa. Chin Agric Sci Bull 29:76–82

    Google Scholar 

  • Jung JH, Ju Y, Seo PJ, Lee JH, Park CM (2012) The SOC1-SPL module integrates photoperiod and gibberellic acid signals to control flowering time in Arabidopsis. Plant J 69:577–588

    Article  CAS  PubMed  Google Scholar 

  • Kardailsky I, Shukla V, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto N, Endo M, Araki T (2015) Expression of a kinase-dead form of CPK33 involved in florigen complex formation causes delayed flowering. Plant Signal Behav 10:12

    Article  Google Scholar 

  • Kobayashi Y, Kaya H, Goto K, Iwabuchi M, Araki T (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lee H, Suh SS, Park E, Cho E, Ahn JH, Kim SG, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH (2007) Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Gene Dev 21:397–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J, Oh M, Park H, Lee I (2008) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates leafy. Plant J 55:832–843

    Article  CAS  PubMed  Google Scholar 

  • Li RQ, Yu C, Li YR, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Li CX, Lin HQ, Dubcovsky J (2015) Factorial combinations of protein interactions generate a multiplicity of florigen activation complexes in wheat and barley. Plant J 84:70–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindhout P, Van Heusden S, Pet G, Van Ooijen JW, Sandbrink H, Verkerk R, Vrielink R, Zabel P (1994) Perspectives of molecular marker assisted breeding for earliness in tomato. Euphytica 79:279–286

    Article  CAS  Google Scholar 

  • Liu C, Chen H, Er HL, Soo HM, Kumar PP, Han JH, Liou YC, Yu H (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135:1481–1491

    Article  CAS  PubMed  Google Scholar 

  • Liu SY, Liu YM, Yang XH, Tong CB, Edwards D, Parkin IAP, Zhao MX, Ma JX, Yu JY, Huang SM, Wang XY, Wang JY, Lu K, Fang ZY, Bancroft I, Yang TJ, Hu Q, Wang XF, Yue Z, Li HJ, Yang LF, Wu J, Zhou Q, Wang WX, King GJ, Pires JC, Lu CX, Wu ZY, Sampath P, Wang Z, Guo H, Pan SK, Yang LM, Min JM, Zhang D, Jin DC, Li WS, Belcram H, Tu JX, Guan M, Qi CK, Du DZ, Li JN, Jiang LC, Batley J, Sharpe AG, Park BS, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong CH, Wang L, Li JP, Hu ZY, Zhuang M, Huang Y, Huang JY, Shi JQ, Mei DS, Liu J, Lee TH, Wang JP, Jin HZ, Li ZY, Li X, Zhang JF, Xiao L, Zhou YM, Liu ZS, Liu XQ, Qin R, Tang X, Liu WB, Wang YP, Zhang YY, Lee J, Kim HH, Denoeud F, Xu X, Liang XM, Hua W, Wang XW, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu HF, Lin T, Klein J, Wang SH, Qi JJ, Zhou Q, Sun JJ, Zhang ZH, Weng YQ, Huang SW (2014) QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor Appl Genet 127:1491–1499

    Article  PubMed  Google Scholar 

  • Maheswaran M, Huang N, Sreerangasamy S, McCouch S (2000) Mapping quantitative trait loci associated with days to flowering and photoperiod sensitivity in rice (Oryza sativa L.). Mol Breed 6:145–155

    Article  CAS  Google Scholar 

  • Miao H, Gu XF, Zhang SP, Zhang ZH, Huang SW, Wang Y, Fang ZY (2012) Mapping QTLs for seedling-associated traits in cucumber. Acta Hortic Sin 39:879–887

    CAS  Google Scholar 

  • Michaels SD, Amasino RM (2001) Loss of FLOWERING LOUCS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13:935–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Peak NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellins signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acid Res 8:4321–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Rawe J, Jiang T, Sun GQ, Wu YY, Wang W, Hu JC, Bodily P, Tian LF, Hakonarson H, Johnson WE, Wei Z, Wang K, Lyon GJ (2013) Low concordance of multiple variant-calling pipelines: practical implications for exome and genome sequencing. Genome Med 5:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Panaud O, Chen X, McCouch S (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607

    CAS  PubMed  Google Scholar 

  • Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001) Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13:2687–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. BioEssays 26:363–373

    Article  CAS  PubMed  Google Scholar 

  • Qin ZR, Wu JJ, Geng SF, Feng N, Chen FJ, Kong XC, Song GY, Chen K, Li AL, Mao L, Wu L (2016) Regulation of FT splicing by an endogenous cue in temperate grasses. Nat Commun 8:14320

    Article  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA 97:3753–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu J, Liu Y, Fang Z, Yang L, Zhang L, Zhuang M, Zhang Y, Li Z, Sun P (2014) Study on the floral characteristics and structure in two types of male sterile lines of broccoli (Brassica oleracea var. italica). J Plant Genet Resour 15:113–119

    Google Scholar 

  • Shu J, Liu Y, Li Z, Zhang L, Fang Z, Yang L, Zhuang M, Zhang Y, Sun P (2015a) Effect of different pruning methods on flowering and fruiting characteristics between different types of male sterile lines in broccoli seed plants. Acta Hortic Sin 42:689–696

    Google Scholar 

  • Shu J, Liu Y, Li Z, Zhang L, Fang Z, Yang L, Zhuang M, Zhang Y, Lv H (2015b) Organelle simple sequence repeat markers help to distinguish carpelloid stamen and normal cytoplasmic male sterile sources in broccoli. PLoS One 10:e0138750

    Article  PubMed  PubMed Central  Google Scholar 

  • Suarez-Lopez P, Wheatley K, Robson F, Onouchi H, Valverde F, Coupland G (2001) CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410:1116–1120

    Article  CAS  PubMed  Google Scholar 

  • Takagi H, Abe A, Yoshida K, Kosugi S, Natsume S, Mitsuoka C, Uemura A, Utsushi H, Tamiru M, Takuno S (2013) QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J 74:174–183

    Article  CAS  PubMed  Google Scholar 

  • Taoka K, Ohki I, Tsuji H, Furuita K, Hayashi K, Yanase T, Yamaguchi M, Nakashima C, Purwestri YA, Tamaki S, Ogaki Y, Shimada C, Nakagawa A, Kojima C, Shimamoto K (2011) 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. Nature 476:332-U97

    Article  Google Scholar 

  • Taoka K, Ohki I, Tsuji H, Kojima C, Shimamoto K (2013) Structure and function of florigen and the receptor complex. Trends Plant Sci 18:287–294

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2006) Joinmap 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wagenigen

    Google Scholar 

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) Map QTL4.0, software for the calculation of QTL positions on genetic maps. Plant Research International, Wagenigen

  • Walley PG, Carder J, Skipper E, Mathas E, Lynn J, Pink D, Buchanan-Wollaston V (2012) A new broccoli × broccoli immortal mapping population and framework genetic map: tools for breeders and complex trait analysis. Theor Appl Genet 124:467–484

    Article  CAS  PubMed  Google Scholar 

  • Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138:738–749

    Article  CAS  PubMed  Google Scholar 

  • Wigge PA, Kim MC, Jaeger K-E, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059

    Article  CAS  PubMed  Google Scholar 

  • Xu XW, Zeng L, Li Y, Luo SB, Wang HM, Tian YH (2012) Major gene plus poly-gene inheritance analysis of the flowing time in pepper (Capsicum annuum. L). J Biomath 27:755–757

    Google Scholar 

  • Zhang F, Chen FD, Fang WM, Chen SM, Liu PS, Yin DM (2011) Heterosis and mixed genetic analysis for florescence-related traits of chrysanthemum. J Nanjing Agric Univ 34:31–36

    Google Scholar 

  • Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J, Zhang Z, Zou J, Han B, Tao Y (2012) Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot 63:5451–5462

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31372067), the China Agriculture Research System (Grant No. CARS-25-A), the Key Projects in the National Science and Technology Pillar Program of China (Grant No. 2013BAD01B04), the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, P.R. China, and the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (Grant No. CAAS-ASTIP-IVFCAAS). We thank Tom Buckle, MSc, from Liwen Bianji, Edanz Group China (http://www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumei Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments in this study comply with the current laws of China.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, J., Liu, Y., Zhang, L. et al. QTL-seq for rapid identification of candidate genes for flowering time in broccoli × cabbage. Theor Appl Genet 131, 917–928 (2018). https://doi.org/10.1007/s00122-017-3047-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-017-3047-5

Navigation