Skip to main content
Log in

Quantitative trait loci controlling leaf appearance and curd initiation of cauliflower in relation to temperature

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

QTL regions on chromosomes C06 and C09 are involved in temperature dependent time to curd induction in cauliflower.

Abstract

Temperature is the main environmental factor influencing curding time of cauliflower (Brassica oleracea var. botrytis). Temperatures above 20–22 °C inhibit development towards curding even in many summer cultivars. To identify quantitative trait loci (QTL) controlling curding time and its related traits in a wide range of different temperature regimes from 12 to 27 °C, a doubled haploid (DH) mapping population segregating for curding time was developed and days to curd initiation (DCI), leaf appearance rate (LAR), and final leaf number (FLN) were measured. The population was genotyped with 176 single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) revealed repeatedly detected QTL for DCI on C06 and C09. The estimated additive effect increased at high temperatures. Significant QTL × environment interactions (Q × E) for FLN and DCI on C06 and C09 suggest that these hotspot regions have major influences on temperature mediated curd induction. 25 % of the DH lines did not induce curds at temperatures higher than 22 °C. Applying a binary model revealed a QTL with LOD >15 on C06. Nearly all lines carrying the allele of the reliable early maturing parental line (PL) on that locus induced curds at high temperatures while only half of the DH lines carrying the allele of the unreliable PL reached the generative phase during the experiment. Large variation in LAR was observed. QTL for LAR were detected repeatedly in several environments on C01, C04 and C06. Negative correlations between LAR and DCI and QTL co-localizations on C04 and C06 suggest that LAR has also effects on development towards curd induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anthony RG, James PE, Jordan BR (1996) Cauliflower (Brassica oleracea var. botrytis L.) curd development: the expression of meristem identity genes. J Exp Bot 47:181–188

    Article  CAS  Google Scholar 

  • Bohuon EJ, Ramsay LD, Craft JA, Arthur AE, Marshall DF, Lydiate DJ, Kearsey MJ (1998) The association of flowering time quantitative trait loci with duplicated regions and candidate loci in Brassica oleracea. Genetics 150:393–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Booij R, Struik PC (1990) Effects of temperature on leaf and curd initiation in relation to juvenility of cauliflower. Sci Hortic 44:201–214

    Article  Google Scholar 

  • Bowman JL, Alvarez J, Weigel D, Meyerowitz EM, Smyth DR (1993) Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119:721–743

    CAS  Google Scholar 

  • Broman KW (2003) Mapping quantitative trait loci in the case of a spike in the phenotype distribution. Genetics 163:1169–1175

    PubMed  PubMed Central  Google Scholar 

  • Broman K, Sen S (2009) A Guide to QTL mapping with R/QTL. Springer, Dordrecht

    Book  Google Scholar 

  • Brown AF, Jeffery EH, Juvik JA (2007) A polymerase chain reaction-based linkage map of broccoli and identification of quantitative trait loci associated with harvest date and head weight. J Am Soc Hort Sci 132:507–513

    CAS  Google Scholar 

  • Camargo LEA, Osborn TC (1996) Mapping loci controlling flowering time in Brassica oleracea. Theor Appl Gent 92:610–616

    Article  CAS  Google Scholar 

  • Carr SM, Irish VF (1997) Floral homeotic gene expression defines developmental arrest stages in Brassica oleracea L. vars. botrytis and italica. Planta 201:179–188

    Article  CAS  PubMed  Google Scholar 

  • Clarke JH, Dean C (1994) Mapping FRI, a locus controlling flowering time and vernalization response in Arabidopsis thaliana. Mol Gen Genet 242:81–89

    CAS  PubMed  Google Scholar 

  • Collins NC, Tardieu F, Tuberosa R (2008) Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physiol 147:469–486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duclos DV, Björkman T (2008) Meristem identity gene expression during curd proliferation and flower initiation in Brassica oleracea. J Exp Bot 59:421–433

    Article  CAS  PubMed  Google Scholar 

  • Fellows JR, Wurr DCE, Phelps K, Reader RJ (1999) Initiation of early summer cauliflowers in response to temperature. J Hortic Sci Biotech 74:328–336

    Article  Google Scholar 

  • Fiedler K, Bekele WA, Duensing R, Gründig S, Snowdon R, Stützel H, Zacharias A, Uptmoor R (2014) Genetic dissection of temperature-dependent sorghum growth during juvenile development. Theor Appl Genet 127:1935–1948

    Article  PubMed  Google Scholar 

  • Friend DJC (1985) Brassica. In: Halevy AH (ed) Handbook of flowering. CRC Press, Boca Raton, pp 48–77

    Google Scholar 

  • Fujime Y, Okuda N (1996) The physiology of flowering in Brassicas, especially about cauliflower and broccoli. Acta Hortic 407:247–254

    Article  Google Scholar 

  • Gao M, Li G, Yang B, Qiu D, Farnham M, Quiros C (2007) High density Brassica oleracea linkage map: identification of useful linkages. Theor Appl Genet 115:277–287

    Article  CAS  PubMed  Google Scholar 

  • Grevsen K, Olesen JE, Veierskov B (2003) The effects of temperature and plant developmental stage on the occurrence of the curd quality defects ‘bracting’ and ‘riciness’ in cauliflower. J Hort Sci Biotechnol 78:638–646

    Google Scholar 

  • Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    Article  CAS  PubMed  Google Scholar 

  • Hallauer AR, Miranda JB (1988) Quantitative Genetics. In: Breeding Maize (ed) 2. Iowa State University Press, Ames

    Google Scholar 

  • Hand JD, Atherton JG (1987) Curd initiation in the cauliflower. I. Juvenility. J Exp Bot 38:2050–2058

    Article  Google Scholar 

  • Irwin JA, Lister C, Soumpourou E, Zhang Y, Howell EC, Teakle G, Dean C (2012) Functional alleles of flowering time regulator FRIGIDA in the Brassica oleracea genome. BMC Plant Biol 12:21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C (2000) Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time. Science 290:344–347

    Article  CAS  PubMed  Google Scholar 

  • Kage H, Stützel H (1999) A simple empirical model for predicting development and dry matter partitioning in cauliflower (Brassica oleracea L. botrytis). Sci Hortic 80:19–38

    Article  Google Scholar 

  • Knapp SJ (1994) Mapping quantitative trait loci. In: Phillips RL, Vasil IK (eds) DNA-based Markers in Plants. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Ann Rev Plant Biol 55:141–172

    Article  CAS  Google Scholar 

  • Kop EP, Teakle GR, McClenaghan ER, Lynn JR, King GJ (2003) Genetic analysis of the bracting trait in cauliflower and broccoli. Plant Sci 164:803–808

    Article  CAS  Google Scholar 

  • Labate JA, Robertson LD, Baldo AM, Bjorkman T (2006) Inflorescence identity genes alleles are poor predictors of inflorescence type in broccoli and cauliflower. J Am Soc Hortic Sci 131:667–673

    CAS  Google Scholar 

  • Lagercrantz U, Putterill J, Coupland G, Lydiate D (1996) Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9:13–20

    Article  CAS  PubMed  Google Scholar 

  • Lin SI, Wang JG, Poom SY, Su CL, Wang SS, Chiou TJ (2005) Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis. Plant Physiol 137:1037–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S, Wang X, Wang J, Lu K, Fang Z, Bancroft I, Yang TJ, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park BS, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee TH, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park BS, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lowman AC, Purugganan MD (1999) Duplication of the Brassica oleracea APETALA1 floral homeotic gene and the evolution of domesticated cauliflower. J Hered 90:514–520

    Article  CAS  PubMed  Google Scholar 

  • Matschegewski C, Zetzsche H, Hasan Y, Leibeguth L, Briggs W, Ordon F, Uptmoor R (2015) Genetic variation of temperature-regulated curd induction in cauliflower: elucidation of floral transition by genome-wide association mapping and gene expression analysis. Front Plant Sci 6:720

    Article  PubMed  PubMed Central  Google Scholar 

  • Méndez-Vigo B, de Andres MT, Ramiro M, Martinez-Zapater JM, Alonso-Blanco C (2010) Temporal analysis of natural variation for the rate of leaf production and its relation with flowering initiation in Arabidopsis thaliana. J Exp Bot 61:1611–1623

    Article  PubMed  PubMed Central  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller AJ (1990) Subset Selection in Regression. Chapman & Hall, London

    Book  Google Scholar 

  • Nieuwhof M (1969) Cole crops: botany, cultivation and utilization. Leonard Hill, London

    Google Scholar 

  • Okazaki K, Sakamoto K, Kikuchi R, Saito A, Togashi E, Kuginuki Y, Mastsumoto S, Hirai M (2007) Mapping and characterization of FLC homologs and QTL analysis of flowering time in Brassica oleracea. Theor Appl Genet 114:495–608

    Article  Google Scholar 

  • Olesen JE, Grevsen K (2000) A simulation model of climate effects on plant productivity and variability in cauliflower (Brassica oleracea L. botrytis). Sci Hortic 83:83–107

    Article  Google Scholar 

  • Osborn TC, Kole C, Parkin IAP, Sharpe AG, Kuiper M, Lydiate DJ, Trick M (1997) Comparison of flowering time genes in Brassica rapa, Brassica napus and Arabidopsis thaliana. Genetics 146:1123–1129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parkin IAP, Koh C, Tang H, Robinson SJ, Kagale S, Clarke WE, Town CD, Nixon J, Krishnakumar V, Bidwell SL, Denoeud F, Belcram H, Links MG, Just J, Clarke C, Bender T, Huebert T, Mason AS, Pires JC, Barker G, Moore J, Walley PG, Manoli S, Batley J, Edwards D, Nelson MN, Wang X, Paterson AH, King G, Bancroft I, Chalhoub B, Sharpe AG (2014) Transcriptome and methylome profiling reveals relics of genome dominance in the mesopolyploid Brassica oleracea. Genome Biol 15:R77

    Article  PubMed  PubMed Central  Google Scholar 

  • Pires JC, Zhao J, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675–688

    Article  Google Scholar 

  • Rae AM, Howell EC, Kearsey MJ (1999) More QTL for flowering time revealed by substitution lines in Brassica oleracea. Heredity 83:586–596

    Article  PubMed  Google Scholar 

  • Razi H, Howell EC, Newbury HJ, Kearsey MJ (2008) Does sequence polymorphism of FLC paralogues underlie flowering time QTL in Brassica oleracea? Theor Appl Genet 116:179–192

    Article  CAS  PubMed  Google Scholar 

  • Ridge S, Brown PH, Hecht V, Driessen RG, Weller JL (2014) The role of BoFLC2 in cauliflower (Brassica oleraceae var. botrytis L.) reproductive development. J Exp Bot 66:125–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryder CD, Smith LB, Teakle GR, King GJ (2001) Contrasting genome organisation: two regions of Brassica oleracea genome compared with collinear regions of Arapidopsis thaliana. Genome 44:808–817

    Article  CAS  PubMed  Google Scholar 

  • Sadik S (1967) Factors involved in curd and flower formation in cauliflower. Proc J Am Soc Hortic Sci 90:252–259

    Google Scholar 

  • Salatheia NS (2003) Regulation of biological clocks in Brassica oleracea and Arabidopsis thaliana. PhD Dissertation, University of Warwick

  • Salter PJ (1969) Studies on crop maturity in cauliflower: I. Relationship between the times of curd initiation and curd maturity of plants within a cauliflower crop. J Hortic Sci 44:129–140

    Article  Google Scholar 

  • Schranz ME, Quijada P, Sung SB, Lukens L, Amasino R, Osborn TC (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastian RL, Kearsey MJ, King GJ (2002) Identification of quantitative trait loci controlling development characteristics of Brassica oleracea L. Theor Appl Genet 104:601–609

    Article  CAS  PubMed  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the rosetta stone of flowering time? Science 296:285–289

    Article  CAS  PubMed  Google Scholar 

  • Smith LB, King GJ (2000) The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Mol Breeding 6:603–613

    Article  Google Scholar 

  • Tadege M, Sheldon CC, Helliwell CA, Stoutjesdijk P, Dennis ES, Peacock WJ (2001) Control of flowering time by FLC orthologues in Brassica napus. Plant J 28:545–553

    Article  CAS  PubMed  Google Scholar 

  • Thomas TH (1980) Flowering of Brussels sprouts in response to low temperature treatment at different stages of growth. Sci Hortic 12:221–229

    Article  Google Scholar 

  • Uptmoor R, Schrag T, Stützel H, Esch E (2008) Crop model based QTL analysis across environments and QTL based estimation of time to floral induction and flowering in Brassica oleracea. Mol Breed 21:205–216

    Article  Google Scholar 

  • Uptmoor R, Li J, Schrag T, Stützel H (2012) Prediction of flowering time in Brassica oleraceae using a quantitative trait loci-based phenology model. Plant Biol 14:179–189

    CAS  PubMed  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Trait Loci 2:1–5

    Google Scholar 

  • Vargas M, van Eeuwijk FA, Crossa J, Ribaut JM (2006) Mapping QTLs and QTL × environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112:1009–1023

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Qian W, Suppanz I, Wei L, Mao B, Long Y, Meng J, Müller A, Jung C (2011a) Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. J Exp Bot 62:5641–5658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Torres MJ, Pierce G, Lemke C, Nelson LK, Yuksel B, Bowers JE, Marler B, Xiao Y, Lin L, Epps E, Sarazen H, Rogers C, Karunakaran S, Ingles J, Giattina E, Mun JH, Seol YJ, Park BS, Amasino RM, Quiros CF, Osborn TC, Pires JC, Town C, Paterson AH (2011b) A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations. BMC Genom 12:470

    Article  CAS  Google Scholar 

  • Wiebe HJ (1972a) Wirkung von Temperatur und Licht auf Wachstum und Entwicklung von Blumenkohl. I. Dauer der Jugendphase für die Vernalisation. Gartenbauwissenschaft 37:165–178

    Google Scholar 

  • Wiebe HJ (1972b) Wirkung von Temperatur und Licht auf Wachstum und Entwicklung von Blumenkohl. II. Optimale Vernalisationstemperatur und Vernalisationsdauer. Gartenbau-wissenschaft 37:293–303

    Google Scholar 

  • Wiebe HJ (1972c) Wirkung von Temperatur und Licht auf Wachstum und Entwicklung von Blumenkohl. III. Vegetative Phase. Gartenbauwissenschaft 37:455–469

    Google Scholar 

  • Wiebe HJ (1980) Anbau von Blumenkohl für eine kontinuierliche Marktbelieferung während der Erntesaison. Gartenbauwissenschaft 45:282–288

    Google Scholar 

  • Wiebe HJ (1990) Vernalization of vegetable crops—a review. Acta Hortic 267:323–328

    Article  Google Scholar 

  • Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wurr DCE, Fellows JR (2000) Temperature influences on the plant development of different maturity types of cauliflower. Acta Hortic 539:69–74

    Article  Google Scholar 

  • Wurr DCE, Akehurst JM, Thomas TH (1981) A hypothesis to explain the relationship between low-temperature treatment, gibberellin activity, curd initiation and maturity of cauliflower. Sci Hortic 15:321–330

    Article  CAS  Google Scholar 

  • Wurr DCE, Fellows JR, Sutherland RA, Elphinstone ED (1990) A model of cauliflower curd growth to predict when curds reach a specified size. J Hortic Sci 65:555–564

    Article  Google Scholar 

  • Wurr DCE, Fellows JR, Phelps K, Reader RJ (1993) Vernalization in summer/autumn Cauliflower (Brassica oleracea var. botrytis L.). J Exp Bot 44:1507–1514

    Article  Google Scholar 

  • Wurr DCE, Fellows JR, Phelps K, Reader RJ (1994) Testing a vernalization model on field-grown crops of four cauliflower cultivars. J Hortic Sci 69:251–255

    Article  Google Scholar 

  • Wurr DCE, Fellows JR, Hambidge AJ (1995) The potential impact of global warming on summer/autumn cauliflower growth in the UK. Agric For Meteorol 72:181–193

    Article  Google Scholar 

  • Yi N, Xu S (1999) Mapping quantitative trait loci for complex binary traits in outbred populations. Heredity 82:668–676

    Article  PubMed  Google Scholar 

  • Yuan YX, Wu J, Sun RF, Zhang XW, Xu DH, Bonnema G, Wang XW (2009) A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. J Exp Bot 60:1299–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Kulkarni V, Liu N, Carpio DPD, Bucher J, Bonnema G (2010) BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. J Exp Bot 61:1817–1825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the German Federal Ministry of Education and Research (BMBF). The project is part of the AgroCluster WeGa Kompetenznetz Gartenbau (Project No. 0315542A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Uptmoor.

Ethics declarations

Funding

This study was funded by the German Federal Ministry of Education and Research (Grant Number 0315542A).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by I. Parkin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, Y., Briggs, W., Matschegewski, C. et al. Quantitative trait loci controlling leaf appearance and curd initiation of cauliflower in relation to temperature. Theor Appl Genet 129, 1273–1288 (2016). https://doi.org/10.1007/s00122-016-2702-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2702-6

Keywords

Navigation