Skip to main content
Log in

Comparative mapping of powdery mildew resistance gene Pm21 and functional characterization of resistance-related genes in wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The powdery mildew resistance gene Pm21 was physically and comparatively mapped by newly developed markers. Seven candidate genes were verified to be required for Pm21 -mediated resistance to wheat powdery mildew.

Abstract

Pm21, a gene derived from wheat wild relative Dasypyrum villosum, has been transferred into common wheat and widely utilized in wheat resistance breeding for powdery mildew. Previously, Pm21 has been located to the bin FL0.45–0.58 of 6VS by using deletion stocks. However, its fine mapping is still a hard work. In the present study, 30 gene-derived 6VS-specific markers were obtained based on the collinearity among genomes of Brachypodium distachyon, Oryza and Triticeae, and then physically and comparatively mapped in the bin FL0.45–0.58 and its nearby chromosome region. According to the maps, the bin FL0.45–0.58 carrying Pm21 was closely flanked by the markers 6VS-03 and 6VS-23, which further narrowed the orthologous regions to 1.06 Mb in Brachypodium and 1.38 Mb in rice, respectively. Among the conserved genes shared by Brachypodium and rice, four serine/threonine protein kinase genes (DvMPK1, DvMLPK, DvUPK and DvPSYR1), one protein phosphatase gene (DvPP2C) and two transcription factor genes (DvGATA and DvWHY) were confirmed to be required for Pm21-mediated resistance to wheat powdery mildew by barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) and transcriptional pattern analyses. In summary, this study gives new insights into the genetic basis of the Pm21 locus and the disease resistance pathways mediated by Pm21.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abass M, Morris PC (2013) The Hordeum vulgare signalling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. J Plant Physiol 170(15):1353–1359

    Article  CAS  PubMed  Google Scholar 

  • Amano Y, Tsubouchi H, Shinohara H, Ogawa M, Matsubayashi Y (2007) Tyrosine-sulfated glycopeptide involved in cellular proliferation and expansion in Arabidopsis. Proc Natl Acad Sci USA 104(46):18333–18338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bahrini I, Ogawa T, Kobayashi F, Kawahigashi H, Handa H (2011) Overexpression of the pathogen-inducible wheat TaWRKY45 gene confers disease resistance to multiple fungi in transgenic wheat plants. Breed Sci 61(4):319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bie TD, Zhao RH, Jiang ZJ, Gao DR, Zhang BQ, He HG (2015) Efficient marker-assisted screening of structural changes involving Haynaldia villosa chromosome 6V using a double-distal-marker strategy. Mol Breeding 35:34

    Article  Google Scholar 

  • Brueggeman R, Druka A, Nirmala J, Cavileer T, Drader T, Rostoks N, Mirlohi A, Bennypaul H, Gill U, Kudrna D, Whitelaw C, Kilian A, Han F, Sun Y, Gill K, Steffenson B, Kleinhofs A (2008) The stem rust resistance gene Rpg5 encodes a protein with nucleotide-binding -site, leucine-rich, and protein kinase domains. Proc Natl Acad Sci USA 105(39):14970–14975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao AZ, Wang XE, Chen YP, Zou XW, Chen PD (2006) A sequence-specific PCR marker linked with Pm21 distinguishes chromosomes 6AS, 6BS, 6DS of Triticum aestivum and 6VS of Haynaldia villosa. Plant Breed 125:201–205

    Article  CAS  Google Scholar 

  • Cao AZ, Xing LP, Wang XY, Yang XM, Wang W, Sun YL, Qian C, Ni JL, Chen YP, Liu DJ, Wang XE, Chen PD (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA 108:7727–7732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J (2005) ACT: the Artemis comparison tool. Bioinformatics 21:3422–3423

    Article  Google Scholar 

  • Chen PD, Qi LL, Zhou B, Zhang SZ, Liu DJ (1995) Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet 91:1125–1128

    CAS  PubMed  Google Scholar 

  • Chen PD, You CF, Hu Y, Chen SW, Zhou B, Cao AZ, Wang XE (2013) Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breed 31:477–484

    Article  CAS  Google Scholar 

  • Desveaux D, Despres C, Joyeux A, Subramaniam R, Brisson N (2000) PBF-2 is a novel single-stranded DNA binding factor implicated in PR-10a gene activation in potato. Plant Cell 12:1477–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desveaux D, Subramaniam R, Despres C, Mess J, Levesque C, Robert PR, Dangl JL, Brisson N (2004) A “whirly” transcription factor is required for salicylic acid-dependent disease resistance in Arabidopsis. Dev Cell 6:229–240

    Article  CAS  PubMed  Google Scholar 

  • Draper J, Mur LA, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge AP (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feltus FA, Singh HP, Lohithaswa HC, Schulze SR, Silva TD, Paterson AH (2006) A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops. Plant Physiol 140:1183–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez-Pozo N, Rosli HG, Martin GB, Mueller LA (2015) The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol Plant 8(3):486–488

    Article  CAS  PubMed  Google Scholar 

  • Fu DL, Uauy C, Distelfeld A, Blechl A, Epstein L, Chen XM, Sela H, Fahima T, Dubcovsky J (2009) A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He HG, Zhu SY, Sun WH, Gao DR, Bie TD (2013) Efficient development of Haynaldia villosa chromosome 6VS-specific DNA markers using a CISP-IS strategy. Plant Breed 132(3):290–294

    Article  CAS  Google Scholar 

  • Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol 138:2155–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hok S, Danchin EGJ, Allasia V, Panabieres F, Attard A, Keller H (2011) An Arabidopsis (malectin-like) leucine-rich repeat receptor-like kinase contributes to downy mildew disease. Plant Cell Environ 34:1944–1957

    Article  CAS  PubMed  Google Scholar 

  • Hok S, Allasia V, Andrio E, Naessens E, Ribes E, Panabieres F, Attard A, Ris N, clement M, Barlet X, Marco Y, Grill E, Eichmann R, Weis C, Huckelhoven R, Ammon A, Ludwig-Muller J, Voll LM, Keller H (2014) The receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 attenuates abscisic acid responses in Arabidopsis. Plant Physiol 166(3):1506–1518

    Article  PubMed  PubMed Central  Google Scholar 

  • IBI (International Brachypodium Initiative) (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Jiang ZN, Ge S, Xing LP, Han DJ, Kang ZS, Zhang GQ, Wang XJ, Wang XE, Chen PD, Cao AZ (2013) RLP1.1, a novel wheat receptor-like protein gene, is involved in the defence response against Puccinia striiformis f. sp. tritici. J Exp Bot 64(12):3735–3746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller B, Feuillet C, Yahiaoui N (2005) Map-based isolation of disease resistance genes from bread wheat: cloning in supersize genome. Genet Res 85:93–100

    Article  CAS  PubMed  Google Scholar 

  • Kerk D, Bulgrien J, Smith DW, Gribskov M (2003) Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria. Plant Physiol 131:1209–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Mohan A, Balyan H, Gupta PK (2009) Orthology between genomes of Brachypodium, wheat and rice. BMC Res Notes 2:93

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee MW, Jelenska J, Greenberg JT (2008) Arabidopsis proteins important for modulating defense responses to Pseudomonas syringae that secrete HopW1-1. Plant J 54:452–465

    Article  CAS  PubMed  Google Scholar 

  • Liu ZJ, Zhu J, Cui Y, Liang Y, Wu HB, Song W, Liu Q, Yang T, Sun QX, Liu ZY (2012) Identification and comparative mapping of a powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides) on chromosome 2BS. Theor Appl Genet 124:1041–1049

    Article  CAS  PubMed  Google Scholar 

  • Loukehaich R, Wang TT, Ouyang B, Ziaf K, Li HX, Zhang JH, Lu YE, Ye ZB (2012) SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. J Exp Bot 63(15):5593–5606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1435

    Article  CAS  PubMed  Google Scholar 

  • Mosher S, Seybold H, Rodriguez P, Stahl M, Davies KA, Dayaratne S, Morillo SA, Wierzba M, Favery B, Keller H, Tax FE, Kemmerling B (2013) The tyrosine-sulfated peptide receptors PSKR1 and PSY1R modify the immunity of Arabidopsis to biotrophic and necrotrophic pathogens in an antagonistic manner. Plant J 73:469–482

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Masia D, Perez-Amador MA, Carbonell J, Marcote MJ (2007) Diverse stress signals activated the C1 subgroup MAP kinases of Arabidopsis. FEBS Lett 581:1834–1840

    Article  CAS  PubMed  Google Scholar 

  • Qi LL, Wang SL, Chen PD, Liu DJ, Friebe B, Gill BS (1997) Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor Appl Genet 95:1084–1091

    Article  CAS  Google Scholar 

  • Qin B, Cao AZ, Wang HY, Chen TT, You FM, Liu YY, Ji JH, Liu DJ, Chen PD, Wang XE (2011) Collinearity-based marker mining for the fine mapping of Pm6, a powdery mildew resistance gene in wheat. Theor Appl Genet 123:207–218

    Article  PubMed  Google Scholar 

  • Reyes JC, Muro-Pastor MI, Florencio FJ (2004) The GATA family of transcription factors in Arabidopsis and rice. Plant Physiol 134:1718–1732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schallus T, Jaeckh C, Feher K, Palma AS, Liu Y, Simpson JC, Mackeen M, Stier G, Gibson TJ, Feizi T, Pieler T, Muhle-Goll C (2008) Malectin: a novel carbohydrate-binding protein of the endoplasmic reticulum and a candidate player in the early steps of protein N-glycosylation. Mol Biol Cell 19:3404–3414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2161–2173

    Article  Google Scholar 

  • Shikata M, Matsuda Y, Ando K, Nishii A, Takemura M, Yokota A, Kohchi T (2004) Characterization of Arabidopsis ZIM, a member of a novel plant-specific GATA factor gene family. J Exp Bot 55(397):631–639

    Article  CAS  PubMed  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim H, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Xue TT, Wang D, Zhang SZ, Ehlting J, Ni F, Jakab S, Zheng CC, Zhong Y (2008) Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genom 9:550

    Article  Google Scholar 

  • Xue F, Ji WQ, Yang CY, Zhang H, Yang BJ (2012) High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var. dicoccoides). Theor Appl Genet 124:1549–1560

    Article  CAS  PubMed  Google Scholar 

  • Zhan HX, Li GR, Zhang XJ, Li X, Guo HJ, Gong WP, Jia JQ, Qiao LY, Ren YK, Yang ZJ, Chang ZJ (2014) Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line. PLoS One 9(11):e113455

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang HT, Guan HY, Li JT, Zhu J, Xie CJ, Zhou YL, Duan XY, Yang T, Sun QX, Liu ZY (2010) Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor Appl Genet 121:1613–1621

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Grants from the National Natural Science Foundation of China (31471497, 31300138), the Natural Science Foundation of Jiangsu Province (BK20130503, BK20140500), the Foundation of Key Laboratory of Wheat Biology and Genetic Improvement on Low & Middle Yangtze River Valley Winter Wheat Region (2015YAAS-OP-001), and the Foundation of Jiangsu University (13JDG103). The authors are grateful to Professor PD Chen (the Cytogenetics Institute, Nanjing Agricultural University) for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huagang He or Tongde Bie.

Ethics declarations

Compliance with ethical standards

The authors state that they follow the Ethical Standards in research. We confirmed that all data in this submission have not been published previously. All authors have no conflict of interests and agree to the submission and publication of the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by B. Keller.

Huagang He and Shanying Zhu: These authors contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1. Primers for 6VS-specific markers. F: forward primer; R: reverse primer (PDF 96 kb)

122_2016_2668_MOESM2_ESM.pdf

Supplementary material 2. Primers for VIGS and quantitative real-time PCR. F: forward primer, R: reverse primer. Primers designed to amplify specific gene fragments for VIGS, and perform quantitative real-time PCR are designated by V and Q, respectively. Restriction sites are shown in italic (GAATTC for EcoRI and GTCGAC for SalI) (PDF 65 kb)

122_2016_2668_MOESM3_ESM.pdf

Supplementary material 3. Arabidopsis homologs of the candidate D. villosum proteins. The data were obtained by BLAST against The Arabidopsis Information Resource (TAIR) using the corresponding wheat proteins as query sequences. a, The protein sequence of wheat ERF, not found in the annotated wheat genome, was predicted by ORF Finder from Chinese spring cDNA AK333697. The coverage of matched sequence of wheat ERF against Arabipdopsis homolog AtERF was only 10 % (PDF 25 kb)

122_2016_2668_MOESM4_ESM.pdf

Supplementary material 4. Second structures of wheat proteins homologous to the candidate D. villosum proteins predicted by the SMART program. The bar represents the numbers of amino acid of wheat proteins (PDF 75 kb)

122_2016_2668_MOESM5_ESM.pdf

Supplementary material 5. Silencing efficiency analysis of the candidate genes by using qPCR, using BSMV:00-infected sample as the control. The transcriptional values of the tested genes in BSMV:00-infected materials were set to 1. The error bars indicate SD (PDF 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., Zhu, S., Jiang, Z. et al. Comparative mapping of powdery mildew resistance gene Pm21 and functional characterization of resistance-related genes in wheat. Theor Appl Genet 129, 819–829 (2016). https://doi.org/10.1007/s00122-016-2668-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2668-4

Keywords

Navigation