Skip to main content
Log in

The yellow-fruited tomato 1 (yft1) mutant has altered fruit carotenoid accumulation and reduced ethylene production as a result of a genetic lesion in ETHYLENE INSENSITIVE2

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

The isolated yft1 allele controls the formation of fruit color in n3122 via the regulation of response to ethylene, carotenoid accumulation and chromoplast development.

Abstract

Fruit color is one of the most important quality traits of tomato (Solanum lycopersicum) and is closely associated with both nutritional and market value. In this study, we characterized a tomato fruit color mutant n3122, named as yellow-fruited tomato 1 (yft1), which produces yellow colored mature fruit. Fruit color segregation of the progeny from an intra-specific cross (M82 × n3122) and an inter-specific cross (n3122 × LA1585) revealed that a single recessive nuclear gene determined the yellow fruit phenotype. Through map-based cloning, the yft1 locus was assigned to an 88.2 kb region at the top of chromosome 9 that was annotated as containing 12 genes. Sequencing revealed that one gene, Solyc09g007870, which encodes ETHYLENE INSENSITIVE2 (EIN2), contained two mutations in yft1: a 13 bp deletion and a 573 bp insertion at position −318 bp upstream of the translation initiation site. We detected that EIN2 expression was substantially lower in yft1 than in the red-fruited M82 wild type and that, in addition, carotenoid accumulation was decreased, ethylene synthesis and perception were impaired and chromoplast development was delayed. The results implied that the reduced expression of EIN2 in yft1 leads to suppressed ethylene signaling which results in abnormal carotenoid production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adalid AM, Rosello S, Nuez F (2010) Evaluation and selection of tomato accessions (Solanum section Lycopersicon) for content of lycopene, β-carotene and ascorbic acid. J Food Compos Anal 23:613–618

    Article  CAS  Google Scholar 

  • Adato A, Mandel T, Mintz-Oron S, Venger I, Levy D, Yativ M, Domínguez E, Wang Z, De Vos RCH, Jetter R (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genet 5:e1000777

    Article  PubMed  PubMed Central  Google Scholar 

  • Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR (1999) EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science 284:2148–2152

    Article  CAS  PubMed  Google Scholar 

  • Ballester AR, Molthoff J, de Vos R, Hekkert BTL, Orzaez D, Fernandez-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor S1MYB12 leads to pink tomato fruit color. Plant Physiol 152:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barry CS, McQuinn RP, Chung M-Y, Besuden A, Giovannoni JJ (2008) Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol 147:179–187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedinger PA, Chetelat RT, McClure B, Moyle LC, Rose JK, Stack SM, van der Knaap E, Baek YS, Lopez-Casado G, Covey PA, Kumar A, Li W, Nunez R, Cruz-Garcia F, Royer S (2011) Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. Sex Plant Reprod 24:171–187

    Article  PubMed  Google Scholar 

  • Bisson MMA, Groth G (2011) New paradigm in ethylene signaling: EIN2, the central regulator of the signaling pathway, interacts directly with the upstream receptors. Plant Signal Behav 6:164–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bisson MMA, Groth G (2015) Targeting plant ethylene responses by controlling essential protein-protein interactions in the ethylene pathway. Mol Plant 8:1165–1174

    Article  CAS  PubMed  Google Scholar 

  • Bisson MMA, Bleckmann A, Allekotte S, Groth G (2009) EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J 424:1–6

    Article  CAS  PubMed  Google Scholar 

  • Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  CAS  PubMed  Google Scholar 

  • Chetelat RT, Meglic V, Cisneros P (2000) A genetic map of tomato based on BC1 Lycopersicon esculentum × Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes. Genetics 154:857–867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung AY, McNellis T, Piekos B (1993) Maintenance of chloroplast components during chromoplast differentiation in the tomato mutant green flesh. Plant Physiol 101:1223–1229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado-Vargas F, Jimenez AR, Paredes-Lopez O (2000) Natural pigments: carotenoid, anthocyanins, and betalains–characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40:173–289

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Pinto MES, Holloway DE, Bramley PM (2000) Application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J 24:551–558

    Article  CAS  PubMed  Google Scholar 

  • Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602

    Article  CAS  PubMed  Google Scholar 

  • Fu X, Kong W, Peng G, Zhou J, Azam M, Xu C, Grierson D, Chen K (2012) Plastid structure and carotenogenic gene expression in red-and white-fleshed loquat (Eriobotrya japonica) fruits. J Exp Bot 63:341–354

    Article  CAS  PubMed  Google Scholar 

  • Gallie D, Young T (2004) The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol Genet Genomics 271:267–281

    Article  CAS  PubMed  Google Scholar 

  • Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J (2008) Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J 53:717–730

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Qu H, Gao L, Chen L, Sebastian RS, Zhao L (2015) Dissecting the mechanism of Solanum lycopersicum and Solanum chilense flower colour formation. Plant Biol 17:1–8

    Article  PubMed  Google Scholar 

  • Giovannoni JJ (2006) Breeding new life into plant metabolism. Nat Biotechnol 24:418–419

    Article  CAS  PubMed  Google Scholar 

  • Gonzali S, Mazzucato A, Perata P (2009) Purple as a tomato: towards high anthocyanin tomatoes. Trends Plant Sci 14:237–241

    Article  CAS  PubMed  Google Scholar 

  • Hamilton A, Lycett G, Grierson D (1990) Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature 346:284–287

    Article  CAS  Google Scholar 

  • Harris WM, Spurr AR (1969a) Chromoplasts of tomato fruits. I. Ultrastructure of low-pigment and high-beta mutants. Carotene analyses. Am J Bot 56:369–379

    Article  CAS  Google Scholar 

  • Harris WM, Spurr AR (1969b) Chromoplasts of tomato fruits. II. The red tomato. Am J Bot 56:380–389

    Article  Google Scholar 

  • Hörtensteiner S (2009) Stay-green regulates chlorophyll and chlorophyll-binding protein degradation during senescence. Trends Plant Sci 14:155–162

    Article  PubMed  Google Scholar 

  • Hu Z, Deng L, Chen X, Wang P, Chen G (2010) Co-suppression of the EIN2-homology gene LeEIN2 inhibits fruit ripening and reduces ethylene sensitivity in tomato. Russ J Plant Physiol 57:554–559

    Article  CAS  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju CL, Yoon GM, Shemansky JM, Lin DY, Ying ZI, Chang JH, Garrett WM, Kessenbrock M, Groth G, Tucker ML, Cooper B, Kieber JJ, Chang C (2012) CTR1 phosphorylates the central regulator EIN2 to control ethylene hormone signaling from the ER membrane to the nucleus in Arabidopsis. Proc Natl Acad Sci USA 109:19486–19491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jun S-H, Han M-J, Lee S, Seo YS, Kim WT, An G (2004) OsEIN2 is a positive component in ethylene signaling in rice. Plant Cell Physiol 45:281–289

    Article  CAS  PubMed  Google Scholar 

  • Kachanovsky DE, Filler S, Isaacson T, Hirschberg J (2012) Epistasis in tomato color mutations involves regulation of phytoene synthase 1 expression by cis-carotenoid. Proc Natl Acad Sci USA 109:19021–19026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang B, Gu Q, Tian P, Xiao L, Cao H, Yang W (2014) A chimeric transcript containing Psy1 and a potential mRNA is associated with yellow flesh color in tomato accession PI 114490. Planta 240:1011–1021

    Article  CAS  PubMed  Google Scholar 

  • Karlova R, Chapman N, David K, Angenent GC, Seymour GB, de Maagd RA (2014) Transcriptional control of fleshy fruit development and ripening. J Exp Bot 65:4527–4541

    Article  PubMed  Google Scholar 

  • Kilambi HV, Kumar R, Sharma R, Sreelakshmi Y (2013) Chromoplast-specific carotenoid-associated protein appears to be important for enhanced accumulation of carotenoid in hp1 tomato fruits. Plant Physiol 161:2085–2101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klee HJ, Giovannoni JJ (2011) Genetics and control of tomato fruit ripening and quality attributes. Annu Rev Genet 45:41–59

    Article  CAS  PubMed  Google Scholar 

  • Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ (1994) The never ripe mutation blocks ethylene perception in tomato. Plant Cell 6:521–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levin I, Frankel P, Gilboa N, Tanny S, Lalazar A (2003) The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor Appl Genet 106:454–460

    CAS  PubMed  Google Scholar 

  • Li W, Chetelat RT (2010) A pollen factor linking inter- and intraspecific pollen rejection in tomato. Science 330:1827–1830

    Article  CAS  PubMed  Google Scholar 

  • Lieberman M, Segev O, Gilboa N, Lalazar A, Levin I (2004) The tomato homolog of the gene encoding UV-damaged DNA binding protein 1 (DDB1) underlined as the gene that causes the high pigment-1 mutant phenotype. Theor Appl Genet 108:1574–1581

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Zhu GT, Zhang JH, Xu XY, Yu QH, Zheng Z, Zhang ZH, Lun YY, Li S, Wang XX, Huang ZJ, Li JM, Zhang CZ, Wang TT, Zhang YY, Wang AX, Zhang YC, Lin K, Li CY, Xiong GH, Xue YB, Mazzucato A, Causse M, Fei ZJ, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li JF, Ye ZB, Du YC, Huang SW (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226

    Article  CAS  PubMed  Google Scholar 

  • Ma N, Feng H, Meng X, Li D, Yang D, Wu C, Meng Q (2014) Overexpression of tomato SlNAC1 transcription factor alters fruit pigmentation and softening. BMC Plant Biol 14:351

    Article  PubMed  PubMed Central  Google Scholar 

  • Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  CAS  PubMed  Google Scholar 

  • Matas AJ, Yeats TH, Buda GJ, Zheng Y, Chatterjee S, Tohge T, Ponnala L, Adato A, Aharoni A, Stark R, Fernie AR, Fei Z, Giovannoni JJ, Rose JK (2011) Tissue- and cell-type specific transcriptome profiling of expanding tomato fruit provides insights into metabolic and regulatory specialization and cuticle formation. Plant Cell 23:3893–3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathews H, Clendennen SK, Caldwell CG, Liu XL, Connors K, Matheis N, Schuster DK, Menasco DJ, Wagoner W, Lightner J, Wagner DR (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15:1689–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menda N, Semel Y, Peled D, Eshed Y, Zamir D (2004) In silico screening of a saturated mutation library of tomato. Plant J 38:861–872

    Article  CAS  PubMed  Google Scholar 

  • Moyle LC (2008) Ecological and evolutionary genomics in the wild tomatoes (Solanum Sect. Lycopersicon). Evolution 62:2995–3013

    Article  PubMed  Google Scholar 

  • Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, De Vos CHR, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474

    Article  CAS  PubMed  Google Scholar 

  • Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11:145–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neto CC (2007) Cranberry and blueberry: evidence for protective effects against cancer and vascular diseases. Mol Nutr Food Res 51:652–664

    Article  CAS  PubMed  Google Scholar 

  • Oeller PW, Lu MW, Taylor LP, Pike DA, Theologis A (1991) Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254:437–439

    Article  CAS  PubMed  Google Scholar 

  • Osorio S, Alba R, Damasceno CM, Lopez-Casado G, Lohse M, Zanor MI, Tohge T, Usadel B, Rose JK, Fei Z, Giovannoni JJ, Fernie AR (2011) Systems biology of tomato fruit development: combined transcript, protein and metabolite analysis of tomato transcription factor (nor, rin) and ethylene receptor (Nr) mutants reveals novel regulatory interactions. Plant Physiol 157:405–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picton S, Barton SL, Bouzayen M, Hamilton AJ, Grierson D (1993) Altered fruit ripening and leaf senescence in tomatoes expressing an antisense ethylene-forming enzyme transgene. Plant J 3:469–481

    Article  CAS  Google Scholar 

  • Qiao H, Shen ZX, Huang SSC, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-Tethered EIN2 control response to ethylene Gas. Science 338:390–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riccioni G (2009) Carotenoid and cardiovascular disease. Curre Atheroscler Rep 11:434–439

    Article  CAS  Google Scholar 

  • Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351

    Article  CAS  PubMed  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosati C, Diretto G, Giuliano G (2010) Biosynthesis and engineering of carotenoid and apocarotenoid in plants: state of the art and future prospects. Biotechnol Genet Eng Rev 26:139–162

    Article  CAS  PubMed  Google Scholar 

  • Schijlen EG, de Vos CR, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schweiggert RM, Steingass CB, Heller A, Esquivel P, Carle R (2011) Characterization of chromoplasts and carotenoid of red-and yellow-fleshed papaya (Carica papaya L.). Planta 234:1031–1044

    Article  CAS  PubMed  Google Scholar 

  • Seeram NP, Adams LS, Hardy ML, Heber D (2004) Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines. J Agric Food Chem 52:2512–2517

    Article  CAS  PubMed  Google Scholar 

  • Shibuya K, Barry KG, Ciardi JA, Loucas HM, Underwood BA, Nourizadeh S, Ecker JR, Klee HJ, Clark DG (2004) The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol 136:2900–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner DM, Peralta IE, Knapp S (2005) Comparison of AFLPs with other markers for phylogenetic inference in wild tomatoes (Solanum L. section Lycopersicon (Mill.) Wettst.). Taxon 54:43–61

    Article  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:181–189

    Article  Google Scholar 

  • Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296:343–346

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Wen C-K (2015) Cryptic Role of the ETHYLENE INSENSITIVE2 nuclear localization signal in ethylene signaling. Mol Plant 8:1129–1130

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chen G, Hu Z, Chen X (2007) Cloning and characterization of the EIN2-homology gene LeEIN2 from tomato. Mitochondrial DNA 18:33–38

    CAS  Google Scholar 

  • Wang L, Li B, Pan MX, Mo XF, Chen YM, Zhang CX (2014) Specific carotenoid intake is inversely associated with the risk of breast cancer among Chinese women. Br J Nutr 111:1686–1695

    Article  CAS  PubMed  Google Scholar 

  • Wen X, Zhang CL, Ji YS, Zhao Q, He WR, An FY, Jiang LW, Guo HW (2012) Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res 22:1613–1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Yen H-C, Giovannoni JJ, Klee HJ (1995) An ethylene-inducible component of signal transduction encoded by Never-ripe. Science 270:1807–1809

    Article  CAS  PubMed  Google Scholar 

  • Yeats TH, Howe KJ, Matas AJ, Buda GJ, Thannhauser TW (2010) Mining the surface proteome of tomato (Solanum lycopersicum) fruit for proteins associated with cuticle biogenesis. J Exp Bot 61:3759–3771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan D, Chen J, Shen H, Yang W (2008) Genetics of flesh color and nucleotide sequence analysis of phytoene synthase gene 1 in a yellow-fruited tomato accession PI114490. Sci Hortic 118:20–24

    Article  CAS  Google Scholar 

  • Zhu HL, Zhu BZ, Shao Y, Wang XG, Lin XJ, Xie YH, Li YC, Gao HY, Luo YB (2006) Tomato fruit development and ripening are altered by the silencing of LeEIN2 gene. J Integr Plant Biol 48:1478–1485

    Article  CAS  Google Scholar 

  • Zhu M, Chen G, Zhou S, Tu Y, Wang Y, Dong T, Hu Z (2014) A new tomato NAC (NAM/ATAF1/2/CUC2) transcription factor, SlNAC4, functions as a positive regulator of fruit Ripening and carotenoid accumulation. Plant Cell Physiol 55:119–135

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Dani Zamir and TGRC (UC, Davis) for providing tomato seeds. We appreciate help from the Instrumental Analysis Center of Shanghai Jiao Tong University with TEM work. We thank PlantScribe (www.plantscribe.com) for carefully editing this manuscript. This work was supported by Grants from the Key Technology Research and Development Program of Shanghai Science and Technology Committee (No. 14JC1403400), the National Natural Science Foundation of China (No. 31071810), the China National ‘863’ High-Tech Program (No. 2011AA100607) and Shanghai Jiao Tong University Agri-X Fund (2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxia Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing or financial interests.

Ethical standards

All the experiments performed in this study comply with the current laws of China.

Additional information

Communicated by S. Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Zhao, W., Qu, H. et al. The yellow-fruited tomato 1 (yft1) mutant has altered fruit carotenoid accumulation and reduced ethylene production as a result of a genetic lesion in ETHYLENE INSENSITIVE2 . Theor Appl Genet 129, 717–728 (2016). https://doi.org/10.1007/s00122-015-2660-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2660-4

Keywords

Navigation