Skip to main content
Log in

Genetic diversity and genome-wide association analysis of cooking time in dry bean (Phaseolus vulgaris L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Fivefold diversity for cooking time found in a panel of 206 Phaseolus vulgaris accessions. Fastest accession cooks nearly 20 min faster than average.   SNPs associated with cooking time on Pv02, 03, and 06.

Abstract

Dry beans (Phaseolus vulgaris L.) are a nutrient dense food and a dietary staple in parts of Africa and Latin America. One of the major factors that limits greater utilization of beans is their long cooking times compared to other foods. Cooking time is an important trait with implications for gender equity, nutritional value of diets, and energy utilization. Very little is known about the genetic diversity and genomic regions involved in determining cooking time. The objective of this research was to assess cooking time on a panel of 206 P. vulgaris accessions, use genome- wide association analysis (GWAS) to identify genomic regions influencing this trait, and to test the ability to predict cooking time by raw seed characteristics. In this study 5.5-fold variation for cooking time was found and five bean accessions were identified which cook in less than 27 min across 2 years, where the average cooking time was 37 min. One accession, ADP0367 cooked nearly 20 min faster than average. Four of these five accessions showed close phylogenetic relationship based on a NJ tree developed with ~5000 SNP markers, suggesting a potentially similar underlying genetic mechanism. GWAS revealed regions on chromosomes Pv02, Pv03, and Pv06 associated with cooking time. Vis/NIR scanning of raw seed explained 68 % of the phenotypic variation for cooking time, suggesting with additional experimentation, it may be possible to use this spectroscopy method to non-destructively identify fast cooking lines as part of a breeding program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adkins E, Tyler E, Wang J, Siriri D, Modi V (2010) Field testing and survey evaluation of household biomass cookstoves in rural sub-Saharan Africa. Energy Sustain Dev 14:172–185

    Article  Google Scholar 

  • Akibode S, Maredia M (2011) Global and regional trends in production, trade and consumption of food legume crops. Department of Agricultural, Food and Resource Economics, Michigan State University

  • Akond A, Khandaker L, Berthold J, Gates L, Peters K, Delong H, Hossain K (2011) Anthocyanin, total polyphenols and antioxidant activity of common bean. Am J Food Technol 6:385–394

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B (Methodological) 57:289–300

    Google Scholar 

  • Bischoff V, Nita S, Neumetzler L, Schindelasch D, Urbain A, Eshed R, Persson S, Delmer D, Scheible W-R (2010) Trichome Birefringence and its homolog AT5G01360 encode Plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol 153:590–602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowles D, Isayenkova J, Lim E-K, Poppenberger B (2005) Glycosyltransferases: managers of small molecules. Curr Opin Plant Biol 8:254–263

    Article  CAS  PubMed  Google Scholar 

  • Box GE, Cox DR (1964) An analysis of transformations. J R Stat Soc Series B (Methodological) 26:211–252

    Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Bressani R (1983) Research needs to up-grade the nutritional quality of common beans (Phaseolus-vulgaris). Qual Plant Plant Foods Human Nutr 32:101–110

    Article  Google Scholar 

  • Caffall KH, Mohnen D (2009) The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr Res 344:1879–1900

    Article  CAS  PubMed  Google Scholar 

  • Cichy K, Fernandez A, Kilian A, Kelly J, Galeano C, Shaw S, Brick M, Hodkinson D, Troxtell E (2014) QTL analysis of canning quality and color retention in black beans (Phaseolus vulgaris L.). Mol Breed 33:139–154

    Article  Google Scholar 

  • Cichy KA, Porch T, Beaver JS, Cregan P, Fourie D, Glahn R, Grusak M, Kamfwa K, Katuuramu D, McClean P, Mndolwa E, Nchimbi-Msolla S, Pastor-Corrales MA, Miklas PN (2015) A Phaseolus vulgaris diversity panel for Andean bean improvement. Crop Sci. doi:10.2135/cropsci2014.09.0653

    Google Scholar 

  • Coelho CMM, de Mattos Bellato C, Santos JCP, Ortega EMM, Tsai SM (2007) Effect of phytate and storage conditions on the development of the ‘hard-to-cook’ phenomenon in common beans. J Sci Food Agric 87:1237–1243

    Article  Google Scholar 

  • Drewnowski A, Rehm CD (2013) Vegetable cost metrics show that potatoes and beans provide most nutrients per penny. PLoS ONE 8:e63277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Elia FM, Hosfield GL, Kelly JD, Uebersax MA (1997) Genetic analysis and interrelationships between traits for cooking time, water absorption, and protein and tannin content of Andean dry beans. J Am Soc Hortic Sci 122:512–518

    Google Scholar 

  • Elsadr HT, Wright LC, Pauls KP, Bett KE (2011) Characterization of seed coat post harvest darkening in common bean (Phaseolus vulgaris L.). Theor Appl Genet 123:1467–1472

    Article  PubMed  Google Scholar 

  • Felix M, Gheewala SH (2011) A review of biomass energy dependency in Tanzania. Energy Procedia 9:338–343

    Article  Google Scholar 

  • Furst T, Connors M, Bisogni CA, Sobal J, Falk LW (1996) Food choice: a conceptual model of the process. Appetite 26:247–266

    Article  CAS  PubMed  Google Scholar 

  • Garcia RAV, Rangel PN, Bassinello PZ, Brondani C, Melo LC, Sibov ST, Vianello-Brondani RP (2012) QTL mapping for the cooking time of common beans. Euphytica 186:779–792

    Article  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80

    Article  PubMed Central  PubMed  Google Scholar 

  • Gibson G (2012) Rare and common variants: twenty arguments. Nat Rev Genet 13:135–145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grubbs FE (1950) Sample criteria for testing outlying observations. Ann Math Stat 21:27–58

    Article  Google Scholar 

  • Guthrie JF, Lin B-H, Frazao E (2002) Role of food prepared away from home in the American diet, 1977-78 versus 1994-96: changes and consequences. J Nutr Educ Behav 34:140–150

    Article  PubMed  Google Scholar 

  • Hernández-Unzón HY, Ortega-Delgado ML (1989) Phytic acid in stored common bean seeds (Phaseolus vulgaris L.). Plant Foods Human Nutr 39:209–221

    Article  Google Scholar 

  • Jacinto-Hernandez C, Azpiroz-Rivero S, Acosta-Gallegos JA, Hernandez-Sanchez H, Bernal-Lugo I (2003) Genetic analysis and random amplified polymorphic DNA markers associated with cooking time in common bean. Crop Sci 43:329–332

    Article  CAS  Google Scholar 

  • Jones PMB, Boulter D (1983) The analysis of development of hardbean during storage of black beans (Phaseolus vulgaris L). Plant Foods Human Nutr 33:77–85

    Article  CAS  Google Scholar 

  • Liu K (1995) Cellular, biological, and physicochemical basis for the hard-to-cook defect in legume seeds. Crit Rev Food Sci Nutr 35:263–298

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Maes WH, Verbist B (2012) Increasing the sustainability of household cooking in developing countries: policy implications. Renew Sust Energ Rev 16:4204–4221

    Article  Google Scholar 

  • Manohar M, Shigaki T, Mei H, Park S, Marshall J, Aguilar J, Hirschi KD (2011) Characterization of Arabidopsis Ca2 +/H + exchanger CAX3. Biochemistry 50:6189–6195

    Article  CAS  PubMed  Google Scholar 

  • Mattson S, Åkerberg E, Eriksson E, Koutler-Andersson E, Vahtras K (1950) Factors determining the composition and cookability of peas. Acta Agric Scand 1:40–61

    Article  CAS  Google Scholar 

  • Menendez A, Curt MD (2013) Energy and socioeconomic profile of a small rural community in the highlands of central Tanzania: a case study. Energy Sustain Dev 17:201–209

    Article  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  CAS  PubMed  Google Scholar 

  • Perez-Vega E, Paneda A, Rodriguez-Suarez C, Campa A, Giraldez R, Ferreira JJ (2010) Mapping of QTLs for morpho-agronomic and seed quality traits in a RIL population of common bean (Phaseolus vulgaris L.). Theor Appl Genet 120:1367–1380

    Article  PubMed  Google Scholar 

  • Rockland LB, Jones FT (1974) Scanning electron microscope studies on dry beans. Effects of cooking on the cellular structure of cotyledons in rehydrated large lima beans. J Food Sci 39:342–346

    Article  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia M, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MMS, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    Article  CAS  PubMed  Google Scholar 

  • Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611

    Article  Google Scholar 

  • Shigaki T, Hirschi KD (2006) Diverse functions and molecular properties emerging for CAX Cation/H + Exchangers in Plants. Plant Biol 8:419–429

    Article  CAS  PubMed  Google Scholar 

  • Siddiq M, Uebersax MA (2012) Dry beans and pulses production and consumption-an overview. In: Siddiq M, Uebersax MA (eds) Dry beans and pulses production, processing and nutrition. Blackwell Publishing Ltd, Oxford, UK. doi:10.1002/9781118448298.ch1

    Chapter  Google Scholar 

  • Smith LP, Ng SW, Popkin BM (2013) Trends in US home food preparation and consumption: analysis of national nutrition surveys and time use studies from 1965–1966 to 2007–2008. Nutr J 12:45

    Article  PubMed Central  PubMed  Google Scholar 

  • Srisuma N, Hammerschmidt R, Uebersax M, Ruengsakulrach S, Bennink M, Hosfield G (1989) Storage induced changes of phenolic acids and the development of hard-to-cook in dry beans (Phaseolus vulgaris var. Seafarer). J Food Sci 54:311–314

    Article  CAS  Google Scholar 

  • Stanley D, Michaels T, Plhak L, Caldwell K (1990) Storage-induced hardening in 20 common bean cultivars. J Food Qual 13:233–247

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tuan YH, Phillips R (1992) Nutritional Quality of Hard-to-cook and Processed Cowpea. J Food Sci 57:1371–1374

    Article  Google Scholar 

  • Turner SD (2014) qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. bioRxiv (2014): 005165

  • Vindiola O, Seib P, Hoseney R (1986) Accelerated development of the hard-to-cook state in beans. Cereal foods world (USA)

  • Voysest O, Dessert M (1991) Bean cultivars: classes and commercial seed types. Common beans: research for crop improvement CAB International, Wallingford :119–162

  • Wang N, Daun JK (2005) Determination of cooking times of pulses using an automated Mattson cooker apparatus. J Sci Food Agric 85:1631–1635

    Article  CAS  Google Scholar 

  • Wang X, Hansen C, Allen K (2013) Identification of Anthocyanins Isolated from Black Bean Canning Wastewater by Macroporous Resin Using Optimized Conditions. Food Nutr Sci 4:174

    Article  CAS  Google Scholar 

  • Winham D, Webb D, Barr A (2008) Beans and good health. Nutr Today 43:201–209

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by funding from the Norman Borlaug Commemorative Research Initiative (US Agency for International Development), by the US Department of Agriculture, Agricultural Research Service. The contents of this publication do not necessarily reflect the views or policies of the US Department of Agriculture, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government. We also thank Yasmin Salat, Dennis Katuuramu, and Scott Shaw for assistance with cooking.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen A. Cichy.

Additional information

Communicated by G. J. Bryan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cichy, K.A., Wiesinger, J.A. & Mendoza, F.A. Genetic diversity and genome-wide association analysis of cooking time in dry bean (Phaseolus vulgaris L.). Theor Appl Genet 128, 1555–1567 (2015). https://doi.org/10.1007/s00122-015-2531-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2531-z

Keywords

Navigation